python人工智能tensorflow函数tensorboard使用方法

目录
  • tensorboard相关函数及其常用参数设置
    • 1 with tf.name_scope(layer_name):
    • 2 tf.summary.histogram(layer_name+"/biases",biases)
    • 3 tf.summary.scalar(“loss”,loss)
    • 4 tf.summary.merge_all()
    • 5 tf.summary.FileWriter(“logs/”,sess.graph)
    • 6 write.add_summary(result,i)
    • 7 tensorboard --logdir=logs
  • 例子

tensorboard常用于更直观的观察数据在神经网络中的变化,或者用于观测已经构建完成的神经网络的结构。其有助于我们更加方便的去观测tensorflow神经网络的搭建情况以及执行情况。

tensorboard相关函数及其常用参数设置

tensorboard相关函数代码真的好多啊。难道都要背下来吗!

不需要!只要收藏了来这里复制粘贴就可以了。常用的只有七个!

1 with tf.name_scope(layer_name):

TensorFlow中的name_scope函数的作用是创建一个参数名称空间。这个空间里包括许多参数,每个参数有不同的名字,这样可以更好的管理参数空间,防止变量命名时产生冲突。

利用该函数可以生成相对应的神经网络结构图。

该函数支持嵌套。

在该标题中,该参数名称空间空间的名字为layer_name。

2 tf.summary.histogram(layer_name+"/biases",biases)

该函数用于将变量记录到tensorboard中。用来显示直方图信息。

一般用来显示训练过程中变量的分布情况。

在该标题中,biases的直方图信息被记录到tensorboard的layer_name+"/biases"中。

3 tf.summary.scalar(“loss”,loss)

用来进行标量信息的可视化与显示。

一般在画loss曲线和accuary曲线时会用到这个函数。

在该标题中,loss的标量信息被记录到tensorboard的"loss"中。

4 tf.summary.merge_all()

将之前定义的所有summary整合在一起。

tf.summary.scalar、tf.summary.histogram、tf.summary.image在定义的时候,也不会立即执行,需要通过sess.run来明确调用这些函数。因为,在一个程序中定义的写日志操作比较多,如果一一调用,将会十分麻烦,所以Tensorflow提供了tf.summary.merge_all()函数将所有的summary整理在一起。

在TensorFlow程序执行的时候,只需要运行这一个操作就可以将代码中定义的所有写summary内容执行一次,从而将所有的summary内容写入。

5 tf.summary.FileWriter(“logs/”,sess.graph)

将summary内容写入磁盘文件,FileWriter类提供了一种用于在给定目录下创建事件文件的机制,并且将summary数据写入硬盘。

在该标题中,summary数据被写入logs文件夹中。

6 write.add_summary(result,i)

该函数成立前提为:

write = tf.summary.FileWriter("logs/",sess.graph)

add_summary是tf.summary.FileWriter父类中的成员函数;添加summary内容到事件文件,写入事件文件。
在该标题中,result是tf.summary.merge_all()执行的结果,i表示世代数。

7 tensorboard --logdir=logs

该函数用于cmd命令行中。用于生成tensorboard观测网页。

例子

该例子为手写体识别例子。

import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data",one_hot = "true")
def add_layer(inputs,in_size,out_size,n_layer,activation_function = None):
    layer_name = 'layer%s'%n_layer
    with tf.name_scope(layer_name):
        with tf.name_scope("Weights"):
            Weights = tf.Variable(tf.random_normal([in_size,out_size]),name = "Weights")
            tf.summary.histogram(layer_name+"/weights",Weights)
        with tf.name_scope("biases"):
            biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name = "biases")
            tf.summary.histogram(layer_name+"/biases",biases)
        with tf.name_scope("Wx_plus_b"):
            Wx_plus_b = tf.matmul(inputs,Weights) + biases
            tf.summary.histogram(layer_name+"/Wx_plus_b",Wx_plus_b)
        if activation_function == None :
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b)
        tf.summary.histogram(layer_name+"/outputs",outputs)
        return outputs
def compute_accuracy(x_data,y_data):
    global prediction
    y_pre = sess.run(prediction,feed_dict={xs:x_data})
    correct_prediction = tf.equal(tf.arg_max(y_data,1),tf.arg_max(y_pre,1))     #判断是否相等
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))   #赋予float32数据类型,求平均。
    result = sess.run(accuracy,feed_dict = {xs:batch_xs,ys:batch_ys})   #执行
    return result
xs = tf.placeholder(tf.float32,[None,784])
ys = tf.placeholder(tf.float32,[None,10])
layer1 = add_layer(xs,784,150,"layer1",activation_function = tf.nn.tanh)
prediction = add_layer(layer1,150,10,"layer2")
with tf.name_scope("loss"):
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=ys,logits = prediction),name = 'loss')
    #label是标签,logits是预测值,交叉熵。
    tf.summary.scalar("loss",loss)
train = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
init = tf.initialize_all_variables()
merged = tf.summary.merge_all()
with tf.Session() as sess:
    sess.run(init)
    write = tf.summary.FileWriter("logs/",sess.graph)
    for i in range(5001):
        batch_xs,batch_ys = mnist.train.next_batch(100)
        sess.run(train,feed_dict = {xs:batch_xs,ys:batch_ys})
        if i % 1000 == 0:
            print("训练%d次的识别率为:%f。"%((i+1),compute_accuracy(mnist.test.images,mnist.test.labels)))
            result = sess.run(merged,feed_dict={xs:batch_xs,ys:batch_ys})
            write.add_summary(result,i)

该例子执行结果为:

结构图:

LOSS值:

weights,biases的直方图分布:

以上就是python人工智能tensorflow函数tensorboard使用方法的详细内容,更多关于tensorflow函数tensorboard的资料请关注我们其它相关文章!

(0)

相关推荐

  • Pytorch中TensorBoard及torchsummary的使用详解

    1.TensorBoard神经网络可视化工具 TensorBoard是一个强大的可视化工具,在pytorch中有两种调用方法: 1.from tensorboardX import SummaryWriter 这种方法是在官方还不支持tensorboard时网上有大神写的 2.from torch.utils.tensorboard import SummaryWriter 这种方法是后来更新官方加入的 1.1 调用方法 1.1.1 创建接口SummaryWriter 功能:创建接口 调用方法:

  • TensorFlow保存TensorBoard图像操作

    简单的代码: import tensorflow as tf In [2]: matrix1=tf.constant([[3.,3.]]) In [3]: matrix2=tf.constant([[2.],[2.]]) with tf.Session() as sess: ...: writer = tf.summary.FileWriter('./graph', sess.graph) ...: result = sess.run(tf.matmul(matrix1, matrix2)) .

  • 对Tensorflow中tensorboard日志的生成与显示详解

    TensorBoard是TensorFlow下的一个可视化的工具,能够帮助我们在训练大规模神经网络过程中出现的复杂且不好理解的运算.TensorBoard能展示你训练过程中绘制的图像.网络结构等. 1. 构建简单的TensorBoard日志输出 import tensorflow as tf input1 = tf.constant([1.0, 2.0, 3.0], name="input1") input2 = tf.Variable(tf.random_uniform([3], n

  • Tensorflow的可视化工具Tensorboard的初步使用详解

    当使用Tensorflow训练大量深层的神经网络时,我们希望去跟踪神经网络的整个训练过程中的信息,比如迭代的过程中每一层参数是如何变化与分布的,比如每次循环参数更新后模型在测试集与训练集上的准确率是如何的,比如损失值的变化情况,等等.如果能在训练的过程中将一些信息加以记录并可视化得表现出来,是不是对我们探索模型有更深的帮助与理解呢? Tensorflow官方推出了可视化工具Tensorboard,可以帮助我们实现以上功能,它可以将模型训练过程中的各种数据汇总起来存在自定义的路径与日志文件中,然后

  • Tensorflow 自带可视化Tensorboard使用方法(附项目代码)

    Tensorboard: 如何更直观的观察数据在神经网络中的变化,或是已经构建的神经网络的结构.上一篇文章说到,可以使用matplotlib第三方可视化,来进行一定程度上的可视化.然而Tensorflow也自带了可视化模块Tensorboard,并且能更直观的看见整个神经网络的结构. 上面的结构图甚至可以展开,变成: 使用: 结构图: with tensorflow .name_scope(layer_name): 直接使用以上代码生成一个带可展开符号的一个域,并且支持嵌套操作: with tf

  • python人工智能tensorflow函数tensorboard使用方法

    目录 tensorboard相关函数及其常用参数设置 1 with tf.name_scope(layer_name): 2 tf.summary.histogram(layer_name+"/biases",biases) 3 tf.summary.scalar(“loss”,loss) 4 tf.summary.merge_all() 5 tf.summary.FileWriter(“logs/”,sess.graph) 6 write.add_summary(result,i)

  • python人工智能tensorflow函数tf.nn.dropout使用方法

    目录 前言 tf.nn.dropout函数介绍 例子 代码 keep_prob = 0.5 keep_prob = 1 前言 神经网络在设置的神经网络足够复杂的情况下,可以无限逼近一段非线性连续函数,但是如果神经网络设置的足够复杂,将会导致过拟合(overfitting)的出现,就好像下图这样. 看到这个蓝色曲线,我就知道: 很明显蓝色曲线是overfitting的结果,尽管它很好的拟合了每一个点的位置,但是曲线是歪歪曲曲扭扭捏捏的,这个的曲线不具有良好的鲁棒性,在实际工程实验中,我们更希望得到

  • python人工智能tensorflow函数tf.get_variable使用方法

    目录 参数数量及其作用 例子 参数数量及其作用 该函数共有十一个参数,常用的有: 名称name 变量规格shape 变量类型dtype 变量初始化方式initializer 所属于的集合collections def get_variable(name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True, collections=None, caching_device=None, partiti

  • python人工智能tensorflow函数tf.get_collection使用方法

    目录 参数数量及其作用 例子 参数数量及其作用 该函数共有两个参数,分别是key和scope. def get_collection(key, scope=None) Wrapper for Graph.get_collection() using the default graph. See tf.Graph.get_collection for more details. Args: key: The key for the collection. For example, the `Gra

  • python人工智能tensorflow函数np.random模块使用方法

    目录 np.random模块常用的一些方法介绍 例子 numpy.random.rand(d0, d1, …, dn): numpy.random.randn(d0, d1, …, dn): numpy.random.randint(low, high=None, size=None, dtype=‘I’): numpy.random.uniform(low=0.0, high=1.0, size=None): numpy.random.normal(loc=0.0, scale=1.0, si

  • python人工智能tensorflow函数tf.assign使用方法

    目录 参数数量及其作用 例子 参数数量及其作用 该函数共有五个参数,分别是: 被赋值的变量 ref 要分配给变量的值 value. 是否验证形状 validate_shape 是否进行锁定保护 use_locking 名称 name def assign(ref, value, validate_shape=None, use_locking=None, name=None) Update 'ref' by assigning 'value' to it. This operation outp

  • python人工智能tensorflow函数tf.layers.dense使用方法

    目录 参数数量及其作用 部分参数解释: 示例 参数数量及其作用 tf.layers.dense用于添加一个全连接层. 函数如下: tf.layers.dense( inputs, #层的输入 units, #该层的输出维度 activation=None, #激活函数 use_bias=True, kernel_initializer=None, # 卷积核的初始化器 bias_initializer=tf.zeros_initializer(), # 偏置项的初始化器 kernel_regul

  • python人工智能tensorflow构建卷积神经网络CNN

    目录 简介 隐含层介绍 1.卷积层 2.池化层 3.全连接层 具体实现代码 卷积层.池化层与全连接层实现代码 全部代码 学习神经网络已经有一段时间,从普通的BP神经网络到LSTM长短期记忆网络都有一定的了解,但是从未系统的把整个神经网络的结构记录下来,我相信这些小记录可以帮助我更加深刻的理解神经网络. 简介 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),

  • python人工智能TensorFlow自定义层及模型保存

    目录 一.自定义层和网络 1.自定义层 2.自定义网络 二.模型的保存和加载 1.保存参数 2.保存整个模型 一.自定义层和网络 1.自定义层 ①必须继承自layers.layer ②必须实现两个方法,__init__和call 这个层,实现的就是创建参数,以及一层的前向传播. 添加参数使用self.add_weight,直接调用即可,因为已经在母类中实现. 在call方法中,实现前向传播并返回结果即可. 2.自定义网络 ①必须继承自keras.Model ②必须实现两个方法,__init__和

  • python人工智能tensorflow构建循环神经网络RNN

    目录 学习前言 RNN简介 tensorflow中RNN的相关函数 tf.nn.rnn_cell.BasicLSTMCell tf.nn.dynamic_rnn 全部代码 学习前言 在前一段时间已经完成了卷积神经网络的复习,现在要对循环神经网络的结构进行更深层次的明确. RNN简介 RNN 是当前发展非常火热的神经网络中的一种,它擅长对序列数据进行处理. 什么是序列数据呢?举个例子. 现在假设有四个字,“我” “去” “吃” “饭”.我们可以对它们进行任意的排列组合. “我去吃饭”,表示的就是我

随机推荐