Python中的Numpy入门教程

1、Numpy是什么

很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。如果接触过matlab、scilab,那么numpy很好入手。 在以下的代码示例中,总是先导入了numpy:


代码如下:

>>> import numpy as np
>>> print np.version.version
1.6.2

2、多维数组

多维数组的类型是:numpy.ndarray。

使用numpy.array方法

以list或tuple变量为参数产生一维数组:


代码如下:

>>> print np.array([1,2,3,4])
[1 2 3 4]
>>> print np.array((1.2,2,3,4))
[ 1.2  2.   3.   4. ]
>>> print type(np.array((1.2,2,3,4)))
<type 'numpy.ndarray'>

以list或tuple变量为元素产生二维数组:


代码如下:

>>> print np.array([[1,2],[3,4]])
[[1 2]
 [3 4]]

生成数组的时候,可以指定数据类型,例如numpy.int32, numpy.int16, and numpy.float64等:


代码如下:

>>> print np.array((1.2,2,3,4), dtype=np.int32)
[1 2 3 4]

使用numpy.arange方法


代码如下:

>>> print np.arange(15)
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]
>>> print type(np.arange(15))
<type 'numpy.ndarray'>
>>> print np.arange(15).reshape(3,5)
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]]
>>> print type(np.arange(15).reshape(3,5))
<type 'numpy.ndarray'>

使用numpy.linspace方法

例如,在从1到3中产生9个数:


代码如下:

>>> print np.linspace(1,3,9)
[ 1.    1.25  1.5   1.75  2.    2.25  2.5   2.75  3.  ]

使用numpy.zeros,numpy.ones,numpy.eye等方法可以构造特定的矩阵

例如:


代码如下:

>>> print np.zeros((3,4))
[[ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]]
>>> print np.ones((3,4))
[[ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]]
>>> print np.eye(3)
[[ 1.  0.  0.]
 [ 0.  1.  0.]
 [ 0.  0.  1.]]

创建一个三维数组:


代码如下:

>>> print np.zeros((2,2,2))
[[[ 0.  0.]
  [ 0.  0.]]

[[ 0.  0.]
  [ 0.  0.]]]

获取数组的属性:


代码如下:

>>> a = np.zeros((2,2,2))
>>> print a.ndim   #数组的维数
3
>>> print a.shape  #数组每一维的大小
(2, 2, 2)
>>> print a.size   #数组的元素数
8
>>> print a.dtype  #元素类型
float64
>>> print a.itemsize  #每个元素所占的字节数
8

数组索引,切片,赋值

示例:


代码如下:

>>> a = np.array( [[2,3,4],[5,6,7]] )
>>> print a
[[2 3 4]
 [5 6 7]]
>>> print a[1,2]
7
>>> print a[1,:]
[5 6 7]
>>> print a[1,1:2]
[6]
>>> a[1,:] = [8,9,10]
>>> print a
[[ 2  3  4]
 [ 8  9 10]]

使用for操作元素


代码如下:

>>> for x in np.linspace(1,3,3):
...     print x
...
1.0
2.0
3.0

基本的数组运算

先构造数组a、b:


代码如下:

>>> a = np.ones((2,2))
>>> b = np.eye(2)
>>> print a
[[ 1.  1.]
 [ 1.  1.]]
>>> print b
[[ 1.  0.]
 [ 0.  1.]]

数组的加减乘除:


代码如下:

>>> print a > 2
[[False False]
 [False False]]
>>> print a+b
[[ 2.  1.]
 [ 1.  2.]]
>>> print a-b
[[ 0.  1.]
 [ 1.  0.]]
>>> print b*2
[[ 2.  0.]
 [ 0.  2.]]
>>> print (a*2)*(b*2)
[[ 4.  0.]
 [ 0.  4.]]
>>> print b/(a*2)
[[ 0.5  0. ]
 [ 0.   0.5]]
>>> print (a*2)**4
[[ 16.  16.]
 [ 16.  16.]]

使用数组对象自带的方法:


代码如下:

>>> a.sum()
4.0
>>> a.sum(axis=0)   #计算每一列(二维数组中类似于矩阵的列)的和
array([ 2.,  2.])
>>> a.min()
1.0
>>> a.max()
1.0

使用numpy下的方法:


代码如下:

>>> np.sin(a)
array([[ 0.84147098,  0.84147098],
       [ 0.84147098,  0.84147098]])
>>> np.max(a)
1.0
>>> np.floor(a)
array([[ 1.,  1.],
       [ 1.,  1.]])
>>> np.exp(a)
array([[ 2.71828183,  2.71828183],
       [ 2.71828183,  2.71828183]])
>>> np.dot(a,a)   ##矩阵乘法
array([[ 2.,  2.],
       [ 2.,  2.]])

合并数组

使用numpy下的vstack和hstack函数:


代码如下:

>>> a = np.ones((2,2))
>>> b = np.eye(2)
>>> print np.vstack((a,b))
[[ 1.  1.]
 [ 1.  1.]
 [ 1.  0.]
 [ 0.  1.]]
>>> print np.hstack((a,b))
[[ 1.  1.  1.  0.]
 [ 1.  1.  0.  1.]]

看一下这两个函数有没有涉及到浅拷贝这种问题:


代码如下:

>>> c = np.hstack((a,b))
>>> print c
[[ 1.  1.  1.  0.]
 [ 1.  1.  0.  1.]]
>>> a[1,1] = 5
>>> b[1,1] = 5
>>> print c
[[ 1.  1.  1.  0.]
 [ 1.  1.  0.  1.]]

可以看到,a、b中元素的改变并未影响c。

深拷贝数组

数组对象自带了浅拷贝和深拷贝的方法,但是一般用深拷贝多一些:


代码如下:

>>> a = np.ones((2,2))
>>> b = a
>>> b is a
True
>>> c = a.copy()  #深拷贝
>>> c is a
False

基本的矩阵运算

转置:


代码如下:

>>> a = np.array([[1,0],[2,3]])
>>> print a
[[1 0]
 [2 3]]
>>> print a.transpose()
[[1 2]
 [0 3]]

迹:


代码如下:

>>> print np.trace(a)
4

numpy.linalg模块中有很多关于矩阵运算的方法:


代码如下:

>>> import numpy.linalg as nplg

特征值、特征向量:


代码如下:

>>> print nplg.eig(a)
(array([ 3.,  1.]), array([[ 0.        ,  0.70710678],
       [ 1.        , -0.70710678]]))

3、矩阵

numpy也可以构造矩阵对象,这里不做讨论。

(0)

相关推荐

  • Python中shape计算矩阵的方法示例

    本文实例讲述了Python中shape计算矩阵的方法.分享给大家供大家参考,具体如下: 看到机器学习算法时,注意到了shape计算矩阵的方法接下来就讲讲我的理解吧 >>> from numpy import * >>> import operator >>> a =mat([[1,2,3],[5,6,9]]) >>> a matrix([[1, 2, 3], [5, 6, 9]]) >>> shape(a) (2,

  • Python使用迭代器打印螺旋矩阵的思路及代码示例

    思路 螺旋矩阵是指一个呈螺旋状的矩阵,它的数字由第一行开始到右边不断变大,向下变大, 向左变大,向上变大,如此循环. 螺旋矩阵用二维数组表示,坐标(x,y),即(x轴坐标,y轴坐标). 顺时针螺旋的方向是->右,下,左,上,用数值表示即是x加1格(1,0),y加1格(0,1),x减1格(-1,0),y减1格(0,-1). 坐标从(0,0)开始行走,当超出范围或遇到障碍时切换方向. 螺旋矩阵的打印首先要对n*n的数组进行赋值,根据规律可以看出,每一层都是按照右->下->左->上的顺序

  • Python列表list解析操作示例【整数操作、字符操作、矩阵操作】

    本文实例讲述了Python列表list解析操作.分享给大家供大家参考,具体如下: #coding=utf8 print ''''' Python在一行中使用一个for循环将所有值放到一个列表中. 列表解析的语法如下: [expr for iter_var in iterable] [expr for iter_var in iterable if cond_expr] ----------------------------------------------------------------

  • python实现稀疏矩阵示例代码

    工程实践中,多数情况下,大矩阵一般都为稀疏矩阵,所以如何处理稀疏矩阵在实际中就非常重要.本文以Python里中的实现为例,首先来探讨一下稀疏矩阵是如何存储表示的. 1.sparse模块初探 python中scipy模块中,有一个模块叫sparse模块,就是专门为了解决稀疏矩阵而生.本文的大部分内容,其实就是基于sparse模块而来的. 第一步自然就是导入sparse模块 >>> from scipy import sparse 然后help一把,先来看个大概 >>> h

  • Python实现的矩阵类实例

    本文实例讲述了Python实现的矩阵类.分享给大家供大家参考,具体如下: 科学计算离不开矩阵的运算.当然,python已经有非常好的现成的库:numpy(numpy的简单安装与使用可参考http://www.jb51.net/article/66236.htm). 我写这个矩阵类,并不是打算重新造一个轮子,只是作为一个练习,记录在此. 注:这个类的函数还没全部实现,慢慢在完善吧. 全部代码: import copy class Matrix: '''矩阵类''' def __init__(sel

  • Python使用稀疏矩阵节省内存实例

    推荐系统中经常需要处理类似user_id, item_id, rating这样的数据,其实就是数学里面的稀疏矩阵,scipy中提供了sparse模块来解决这个问题,但scipy.sparse有很多问题不太合用: 1.不能很好的同时支持data[i, ...].data[..., j].data[i, j]快速切片: 2.由于数据保存在内存中,不能很好的支持海量数据处理. 要支持data[i, ...].data[..., j]的快速切片,需要i或者j的数据集中存储:同时,为了保存海量的数据,也需

  • Python表示矩阵的方法分析

    本文实例讲述了Python表示矩阵的方法.分享给大家供大家参考,具体如下: 在c语言中,表示个"整型3行4列"的矩阵,可以这样声明:int  a[3][4];在python中一不能声明变量int,二不能列出维数.可以利用列表中夹带列表形式表示.例如: 表示矩阵 ,可以这样: count = 1 a = [] for i in range(0, 3): tmp = [] for j in range(0, 3): tmp.append(count) count += 1 a.append

  • Python NumPy库安装使用笔记

    1. NumPy安装 使用pip包管理工具进行安装 复制代码 代码如下: $ sudo pip install numpy 使用pip包管理工具安装ipython(交互式shell工具) 复制代码 代码如下: $ sudo pip instlal ipython $ ipython --pylab  #pylab模式下, 会自动导入SciPy, NumPy, Matplotlib模块 2. NumPy基础 2.1. NumPy数组对象 具体解释可以看每一行代码后的解释和输出 复制代码 代码如下:

  • Python 稀疏矩阵-sparse 存储和转换

    稀疏矩阵-sparsep from scipy import sparse 稀疏矩阵的储存形式 在科学与工程领域中求解线性模型时经常出现许多大型的矩阵,这些矩阵中大部分的元素都为0,被称为稀疏矩阵.用NumPy的ndarray数组保存这样的矩阵,将很浪费内存,由于矩阵的稀疏特性,可以通过只保存非零元素的相关信息,从而节约内存的使用.此外,针对这种特殊结构的矩阵编写运算函数,也可以提高矩阵的运算速度. scipy.sparse库中提供了多种表示稀疏矩阵的格式,每种格式都有不同的用处,其中dok_m

  • python实现矩阵乘法的方法

    本文实例讲述了python实现矩阵乘法的方法.分享给大家供大家参考.具体实现方法如下: def matrixMul(A, B): res = [[0] * len(B[0]) for i in range(len(A))] for i in range(len(A)): for j in range(len(B[0])): for k in range(len(B)): res[i][j] += A[i][k] * B[k][j] return res def matrixMul2(A, B):

  • Python创建对称矩阵的方法示例【基于numpy模块】

    本文实例讲述了Python创建对称矩阵的方法.分享给大家供大家参考,具体如下: 对称(实对称)矩阵也即: step 1:创建一个方阵 >>> import numpy as np >>> X = np.random.rand(5**2).reshape(5, 5) >>> X array([[ 0.26984148, 0.25408384, 0.12428487, 0.0194565 , 0.91287708], [ 0.31837673, 0.354

  • Python矩阵常见运算操作实例总结

    本文实例讲述了Python矩阵常见运算操作.分享给大家供大家参考,具体如下: python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包. 一.numpy的导入和使用 from numpy import *;#导入numpy的库函数 import numpy as np; #这个方式使用numpy的函数时,需要以np.开头. 二.矩阵的创建 由一维或二维数据创建矩阵 from numpy import *; a1=array([1,2,3]); a1=ma

随机推荐