详解应用程序与驱动程序通信DeviceIoControl

一、定义IO控制码 

其实可以看作是一种通信协议

看看CTL_CODE原型:

#define CTL_CODE( DeviceType, Function, Method, Access ) ( \
  ((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method) \
  )

可以看到,这个宏四个参数,自然是一个32位分成了4部分,高16位存储设备类型,14~15位访问权限,2~13位操作功能,最后0,1两位就是确定缓冲区是如何与I/O和文件系统数据缓冲区进行数据传递方式,最常见的就是METHOD_BUFFERED。

自定义CTL_CODE:

#define IOCTL_Device_Function CTL_CODE(DeviceType, Function, Method, Access)

IOCTL_Device_Function:生成的IRP的MinorFunction

DeviceType:设备对象的类型。设备类型可参考:http://blog.csdn.net/liyun123gx/article/details/38058965

Function :自定义的IO控制码。自己定义时取0x800到0xFFF,因为0x0到0x7FF是微软保留的。

Method :数据的操作模式。

METHOD_BUFFERED:缓冲区模式

METHOD_IN_DIRECT:直接写模式

METHOD_OUT_DIRECT:直接读模式

METHOD_NEITHER :Neither模式

Access:访问权限,可取值有:

FILE_ANY_ACCESS:表明用户拥有所有的权限

FILE_READ_DATA:表明权限为只读

FILE_WRITE_DATA:表明权限为可写

也可以 FILE_WRITE_DATA | FILE_READ_DATA:表明权限为可读可写,但还没达到FILE_ANY_ACCESS的权限。

继续介绍这个缓冲区数据传递方式Method:

Method表示Ring3/Ring0的通信中的内存访问方式,有四种方式:

#defineMETHOD_BUFFERED0

#defineMETHOD_IN_DIRECT1

#defineMETHOD_OUT_DIRECT2

#defineMETHOD_NEITHER3

(1)如果使用METHOD_BUFFERED,表示系统将用户的输入输出都经过pIrp->AssociatedIrp.SystemBuffer来缓冲,因此这种方式的通信比较安全。

METHOD_BUFFERED方式相当于对Ring3的输入输出都进行了缓冲。

METHOD_BUFFERED方式:

(2)如果使用METHOD_IN_DIRECT或METHOD_OUT_DIRECT方式,表示系统会将输入缓冲在pIrp->AssociatedIrp.SystemBuffer中,并将输出缓冲区锁定,然后在内核模式下重新映射一段地址,这样也是比较安全的。

METHOD_IN_DIRECT和METHOD_OUT_DIRECT可称为"直接方式",是指系统依然对Ring3的输入缓冲区进行缓冲,但是对Ring3的输出缓冲区并没有缓冲,而是在内核中进行了锁定。这样Ring3输出缓冲区在驱动程序完成I/O请求之前,都是无法访问的,从一定程度上保障了安全性。

这两种方式,对于Ring3的输入缓冲区和METHOD_BUFFERED方式是一致的。对于Ring3的输出缓冲区,首先由系统锁定,并使用pIrp->MdlAddress来描述这段内存,驱动程序需要使用MmGetSystemAddressForMdlSafe函数将这段内存映射到内核内存地址(OutputBuffer),然后可以直接写入OutputBuffer地址,最终在驱动派遣例程返回后,由系统解除这段内存的锁定。

METHOD_IN_DIRECT和METHOD_OUT_DIRECT方式的内存访问

METHOD_IN_DIRECT和METHOD_OUT_DIRECT方式的区别,仅在于打开设备的权限上,当以只读权限打开设备时,METHOD_IN_DIRECT方式的IoControl将会成功,而METHOD_OUT_DIRECT方式将会失败。如果以读写权限打开设备,两种方式都会成功。

METHOD_IN_DIRECT和METHOD_OUT_DIRECT方式:

(3)如果使用METHOD_NEITHER方式,"其他方式",虽然通信的效率提高了,但是不够安全。驱动的派遣函数中输入缓冲区可以通过I/O堆栈(IO_STACK_LOCATION)的stack->Parameters.DeviceIo Control.Type3InputBuffer得到。输出缓冲区可以通过pIrp->UserBuffer得到。由于驱动中的派遣函数不能保证传递进来的用户输入和输出地址,因此最好不要直接去读写这些地址的缓冲区。应该在读写前使用ProbeForRead和ProbeForWrite函数探测地址是否可读和可写。

METHOD_ NEITHER方式是不进行缓冲的,在驱动中可以直接使用Ring3的输入输出内存地址,

驱动程序可以通过pIrpStack->Parameters.DeviceIoControl.Type3InputBuffer得到Ring3的输入缓冲区地址(其中pIrpStack是IoGetCurrentIrpStackLocation(pIrp)的返回);通过pIrp-> UserBuffer得到Ring3的输出缓冲区地址。

由于METHOD_NEITHER方式并不安全,因此最好对Type3InputBuffer读取之前使用ProbeForRead函数进行探测,对UserBuffer写入之前使用ProbeForWrite函数进行探测,当没有发生异常时,再进行读取和写入操作。

METHOD_NEITHER方式:

二、定义驱动设备名,符号链接名

定义好了IO控制码CTL_CODE,第二步驱动程序还要准备驱动设备名和符号链接名。

关于在Ring0层中要设置驱动设备名的同时还要设置符号链接名的原因,是因为只有符号链接名才可以被用户模式下的应用程序识别。

windows下的设备是以"\Device\[设备名]”形式命名的。

例如磁盘分区的c盘,d盘的设备名称就是"\Device\HarddiskVolume1”,"\Device\HarddiskVolume2”, 当然也可以不指定设备名称。

如果IoCreateDevice中没有指定设备名称,那么I/O管理器会自动分配一个数字作为设备的名称。

例如"\Device\00000001"。\Device\[设备名],不容易记忆,通常符号链接可以理解为设备的别名,更重要的是设备名,只能被内核模式下的其他驱动所识别,而别名可以被用户模式下的应用程序识别,例如c盘,就是名为"c:"的符号链接,其真正的设备对象是"\Device\HarddiskVolume1”,所以在写驱动时候,一般我们创建符号链接,即使驱动中没有用到,这也算是一个好的习惯吧。

驱动中符号链接名是这样写的

L"\\??\\HelloDDK" --->\??\HelloDDK

或者

L"\\DosDevices\\HelloDDK"--->\DosDevices\HelloDDK

在应用程序中,符号链接名:

L"\\\\.\\HelloDDK"-->\\.\HelloDDK

DosDevices的符号链接名就是??, 所以"\\DosDevices\\XXXX"其实就是\\??\\XXXX

#define DEVICE_OBJECT_NAME  L"\\Device\\BufferedIODeviceObjectName"
//设备与设备之间通信
#define DEVICE_LINK_NAME    L"\\DosDevices\\BufferedIODevcieLinkName"
//设备与Ring3之间通信

三、将符号链接名与设备对象名称关联 ,等待IO控制码

驱动程序要做的最后一步,先用IoCreateDevice函数创建设备对象,再用IoCreateSymbolicLink将符号链接名与设备对象名称关联,大功告成,等待IO控制码。

 //创建设备对象名称
RtlInitUnicodeString(&DeviceObjectName,DEVICE_OBJECT_NAME);
//创建设备对象
Status = IoCreateDevice(DriverObject,NULL,
    &DeviceObjectName,
    FILE_DEVICE_UNKNOWN,
    0, FALSE,
    &DeviceObject);
if (!NT_SUCCESS(Status))
{
    return Status;
}

//创建设备连接名称
RtlInitUnicodeString(&DeviceLinkName, DEVICE_LINK_NAME);
//将设备连接名称与设备名称关联
Status = IoCreateSymbolicLink(&DeviceLinkName,&DeviceObjectName);

if (!NT_SUCCESS(Status))
{
    IoDeleteDevice(DeviceObject);
    return Status;
}       

四、应用程序获取设备句柄,发送IO控制码

驱动程序铺垫打理好之后,应用程序就可以由符号链接名通过CreateFile函数获取到设备句柄DeviceHandle,再用本场的主角,DeviceIoControl通过这个DeviceHandle发送控制码了。

先看看这两个函数:

BOOL WINAPI DeviceIoControl(
  _In_         HANDLE hDevice,       //CreateFile函数打开的设备句柄
  _In_         DWORD dwIoControlCode,//自定义的控制码
  _In_opt_     LPVOID lpInBuffer,    //输入缓冲区
  _In_         DWORD nInBufferSize,  //输入缓冲区的大小
  _Out_opt_    LPVOID lpOutBuffer,   //输出缓冲区
  _In_         DWORD nOutBufferSize, //输出缓冲区的大小
  _Out_opt_    LPDWORD lpBytesReturned, //实际返回的字节数,对应驱动程序中pIrp->IoStatus.Information。
  _Inout_opt_  LPOVERLAPPED lpOverlapped //重叠操作结构指针。同步设为NULL,DeviceIoControl将进行阻塞调用;否则,应在编程时按异步操作设计
);
HANDLE CreateFile(
  LPCTSTR lpFileName,                         //打开的文件名
  DWORD dwDesiredAccess,                    //访问权限
  DWORD dwShareMode,                      //共享模式
  LPSECURITY_ATTRIBUTES lpSecurityAttributes,   //安全属性
  DWORD dwCreationDisposition,               //文件存在与不存在时的文件创建模式
  DWORD dwFlagsAndAttributes,                //文件属性设定(隐藏、只读、压缩、指定为系统文件等)
  HANDLE hTemplateFile                       //文件副本句柄
);

五、总结DeviceIoControl的通信流程

1.驱动程序和应用程序自定义好IO控制码 (CTL_CODE宏 四个参数,32位,4部分,存储设备类型,访问权限,操作功能,缓冲区数据传递方式(四种))

2.驱动程序定义驱动设备名,符号链接名, 将符号链接名与设备对象名称关联 ,等待IO控制码(IoCreateDevice,IoCreateSymbolicLink)

3.应用程序由符号链接名通过CreateFile函数获取到设备句柄DeviceHandle,再用本场的主角,DeviceIoControl通过这个设备句柄发送控制码给派遣函数。

六、源代码

BufferedIO.h

#pragma once
#include <ntifs.h>

#define CTL_SYS \
    CTL_CODE(FILE_DEVICE_UNKNOWN,0x830,METHOD_BUFFERED,FILE_ANY_ACCESS)

#define DEVICE_OBJECT_NAME  L"\\Device\\BufferedIODeviceObjectName"
//设备与设备之间通信
#define DEVICE_LINK_NAME    L"\\DosDevices\\BufferedIODevcieLinkName"
//设备与Ring3之间通信
VOID DriverUnload(PDRIVER_OBJECT DriverObject);
NTSTATUS PassThroughDispatch(PDEVICE_OBJECT  DeviceObject, PIRP Irp);
NTSTATUS ControlThroughDispatch(PDEVICE_OBJECT  DeviceObject, PIRP Irp);

BufferedIO.c

#include "BufferedIO.h"

NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegisterPath)
{
    NTSTATUS Status = STATUS_SUCCESS;
    PDEVICE_OBJECT  DeviceObject = NULL;
    UNICODE_STRING  DeviceObjectName;
    UNICODE_STRING  DeviceLinkName;
    ULONG           i;
    //   栈
    //   堆
    //   全局(global Static Const)
    DriverObject->DriverUnload = DriverUnload;

    //创建设备对象名称
    RtlInitUnicodeString(&DeviceObjectName,DEVICE_OBJECT_NAME);

    //创建设备对象
    Status = IoCreateDevice(DriverObject,NULL,
        &DeviceObjectName,
        FILE_DEVICE_UNKNOWN,
        0, FALSE,
        &DeviceObject);
    if (!NT_SUCCESS(Status))
    {
        return Status;
    }
    //创建设备连接名称
    RtlInitUnicodeString(&DeviceLinkName, DEVICE_LINK_NAME);

    //将设备连接名称与设备名称关联
    Status = IoCreateSymbolicLink(&DeviceLinkName,&DeviceObjectName);

    if (!NT_SUCCESS(Status))
    {
        IoDeleteDevice(DeviceObject);
        return Status;
    }
    //设计符合我们代码的派遣历程
    for (i=0;i<IRP_MJ_MAXIMUM_FUNCTION;i++)
    {
        DriverObject->MajorFunction[i] = PassThroughDispatch;   //函数指针
    }
    DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = ControlThroughDispatch;
    return Status;
}
//派遣历程
NTSTATUS PassThroughDispatch(PDEVICE_OBJECT  DeviceObject,PIRP Irp)
{
    Irp->IoStatus.Status = STATUS_SUCCESS;     //LastError()
    Irp->IoStatus.Information = 0;             //ReturnLength
    IoCompleteRequest(Irp, IO_NO_INCREMENT);   //将Irp返回给Io管理器
    return STATUS_SUCCESS;
}
NTSTATUS ControlThroughDispatch(PDEVICE_OBJECT  DeviceObject, PIRP Irp)
{
    NTSTATUS Status;
    ULONG_PTR Informaiton = 0;
    PVOID InputData = NULL;
    ULONG InputDataLength = 0;
    PVOID OutputData = NULL;
    ULONG OutputDataLength = 0;
    ULONG IoControlCode = 0;
    PIO_STACK_LOCATION  IoStackLocation = IoGetCurrentIrpStackLocation(Irp);  //Irp堆栈
    IoControlCode = IoStackLocation->Parameters.DeviceIoControl.IoControlCode;
    InputData  = Irp->AssociatedIrp.SystemBuffer;
    OutputData = Irp->AssociatedIrp.SystemBuffer;
    InputDataLength  = IoStackLocation->Parameters.DeviceIoControl.InputBufferLength;
    OutputDataLength = IoStackLocation->Parameters.DeviceIoControl.OutputBufferLength;
    switch (IoControlCode)
    {
    case CTL_SYS:
    {
        if (InputData != NULL&&InputDataLength > 0)
        {
            DbgPrint("%s\r\n", InputData);
        }
        if (OutputData != NULL&&OutputDataLength >= strlen("Ring0->Ring3") + 1)
        {
            memcpy(OutputData, "Ring0->Ring3", strlen("Ring0->Ring3") + 1);
            Status = STATUS_SUCCESS;
            Informaiton = strlen("Ring0->Ring3") + 1;
        }
        else
        {
            Status = STATUS_INSUFFICIENT_RESOURCES;   //内存不够
            Informaiton = 0;
        }
        break;
    }
    default:
        break;
    }
    Irp->IoStatus.Status = Status;             //Ring3 GetLastError();
    Irp->IoStatus.Information = Informaiton;
    IoCompleteRequest(Irp, IO_NO_INCREMENT);  //将Irp返回给Io管理器
    return Status;                            //Ring3 DeviceIoControl()返回值
}
VOID DriverUnload(PDRIVER_OBJECT DriverObject)
{
    UNICODE_STRING  DeviceLinkName;
    PDEVICE_OBJECT  v1 = NULL;
    PDEVICE_OBJECT  DeleteDeviceObject = NULL;

    RtlInitUnicodeString(&DeviceLinkName, DEVICE_LINK_NAME);
    IoDeleteSymbolicLink(&DeviceLinkName);

    DeleteDeviceObject = DriverObject->DeviceObject;
    while (DeleteDeviceObject != NULL)
    {
        v1 = DeleteDeviceObject->NextDevice;
        IoDeleteDevice(DeleteDeviceObject);
        DeleteDeviceObject = v1;
    }
}

IO.cpp

// 缓冲区IO.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include <windows.h>
#define DEVICE_LINK_NAME    L"\\\\.\\BufferedIODevcieLinkName"

#define CTL_SYS \
    CTL_CODE(FILE_DEVICE_UNKNOWN,0x830,METHOD_BUFFERED,FILE_ANY_ACCESS)
int main()
{
    HANDLE DeviceHandle = CreateFile(DEVICE_LINK_NAME,
        GENERIC_READ | GENERIC_WRITE,
        FILE_SHARE_READ | FILE_SHARE_WRITE,
        NULL,
        OPEN_EXISTING,
        FILE_ATTRIBUTE_NORMAL,
        NULL);
    if (DeviceHandle==INVALID_HANDLE_VALUE)
    {
        return 0;
    }
    char BufferData = NULL;
    DWORD ReturnLength = 0;
    BOOL IsOk = DeviceIoControl(DeviceHandle, CTL_SYS,
        "Ring3->Ring0",
        strlen("Ring3->Ring0")+1,
        (LPVOID)BufferData,
        0,
        &ReturnLength,
        NULL);
    if (IsOk == FALSE)
    {
        int LastError = GetLastError();

        if (LastError == ERROR_NO_SYSTEM_RESOURCES)
        {
            char BufferData[MAX_PATH] = { 0 };
            IsOk = DeviceIoControl(DeviceHandle, CTL_SYS,
                "Ring3->Ring0",
                strlen("Ring3->Ring0") + 1,
                (LPVOID)BufferData,
                MAX_PATH,
                &ReturnLength,
                NULL);

            if (IsOk == TRUE)
            {
                printf("%s\r\n", BufferData);
            }
        }
    }
    if (DeviceHandle != NULL)
    {
        CloseHandle(DeviceHandle);
        DeviceHandle = NULL;
    }
    printf("Input AnyKey To Exit\r\n");

    getchar();
    return 0;
}

以上就是详解应用程序与驱动程序通信DeviceIoControl的详细内容,更多关于应用程序 驱动程序通信 DeviceIoControl的资料请关注我们其它相关文章!

(0)

相关推荐

  • 浅析iOS应用开发中线程间的通信与线程安全问题

    线程间的通信   简单说明 线程间通信:在1个进程中,线程往往不是孤立存在的,多个线程之间需要经常进行通信   线程间通信的体现 1个线程传递数据给另1个线程 在1个线程中执行完特定任务后,转到另1个线程继续执行任务   线程间通信常用方法 复制代码 代码如下: - (void)performSelectorOnMainThread:(SEL)aSelector withObject:(id)arg waitUntilDone:(BOOL)wait; - (void)performSelecto

  • Android系统进程间通信Binder机制在应用程序框架层的Java接口源代码分析

    在前面几篇文章中,我们详细介绍了Android系统进程间通信机制Binder的原理,并且深入分析了系统提供的Binder运行库和驱动程序的源代码.细心的读者会发现,这几篇文章分析的Binder接口都是基于C/C++语言来实现的,但是我们在编写应用程序都是基于Java语言的,那么,我们如何使用Java语言来使用系统的Binder机制来进行进程间通信呢?这就是本文要介绍的Android系统应用程序框架层的用Java语言来实现的Binder接口了. 熟悉Android系统的读者,应该能想到应用程序框架

  • 详解应用程序与驱动程序通信DeviceIoControl

    一.定义IO控制码  其实可以看作是一种通信协议 看看CTL_CODE原型: #define CTL_CODE( DeviceType, Function, Method, Access ) ( \ ((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method) \ ) 可以看到,这个宏四个参数,自然是一个32位分成了4部分,高16位存储设备类型,14~15位访问权限,2-13位操作功能,最后

  • 详解小程序横屏方案对比

    前言 随着小程序api开放的功能日渐增多,小程序可以做到的功能和展现形式也越来越多,其中横屏的展现形式就是其中的一种,而实现横屏的方案也有多种,但是每种方案都有一定的缺陷,恰巧最近也在横屏方案上踩了不少坑,接下来就来和大家分享一下小程序的不同横屏方案的优劣(踩坑心得) 组件自带横屏方法 小程序中的媒体组件一般都会提供全屏的方法,而且全屏方法中会提供一个direction的全屏参数,可以通过这全屏参数将小程序旋转90度横屏展示,这是小程序中最简单的横屏方法. 这个方法优点在于调用的组件全屏方法做的

  • 详解python程序中的多任务

    现实生活中,有很多场景中的事情是同时进行的,比如开车的时候,手和脚共同来驾驶汽车,再比如唱歌跳舞也是同时进行的. 以上这些可以理解为多任务.那在程序中怎么能做到多任务,它有什么好处? 接下来我们来看看没有多任务的程序是什么效果. import time def sing(): for i in range(5): print("正在唱...") time.sleep(1) def dance(): for i in range(5): print("正在跳...")

  • 详解小程序毫秒级倒计时(适用于拼团秒杀功能)

    废话不多说直接上代码: 效果图: index.js Page({ /** * 页面的初始数据 */ data: { countdown:'' , endDate2: '2018-08-08 11:41:00' }, /** * 生命周期函数--监听页面加载 */ onLoad: function (options) { var that = this; that.countTime() }, countTime() { var that = this; var date = new Date()

  • 详解小程序之简单登录注册表单验证

    这段时间在做员工管理的小程序,前期在登录注册上花了不少功夫,今天就给大家分享下. 效果图,wxss的内容较简单,自己编写即可. ##主要内容 一.首先我是在util.js中引入表单正则验证规则,给予login.js来引用 function regexConfig() { var reg = { userid: /^[A-Za-z0-9]+$/, //邮箱正则验证 phone: /^1(3|4|5|7|8)\d{9}$/, //手机号正则验证 cards: /^[\u4e00-\u9fa5]{2,

  • 详解小程序用户登录状态检查与更新实例

    这篇文章主要解决以下问题:用户每次登录小程序(包括第一次使用)及点击小程序的每个页面的时候,我们如何判断他当前的登录状态是否过期?如果过期,如何重新获取用户信息并发送至开发者服务器更新用户信息,以及设置新的用户登录状态? 将这个部分单独作为一篇文章有两个原因: ① wx.getUserInfo(OBJECT) 接口调整,废弃了以前直接获取用户信息的方法: ② 上篇文章授权.登录.session_key.unionId只梳理了登录流程而没有贴实际的代码,所以这篇文章以代码实现为主. 1. 代码逻辑

  • 详解小程序开发经验:多页面数据同步

    导语:本文主要介绍在小程序中,多页面之间如何保持数据同步 在很多的产品中,都会存在跨页面间需要数据同步,如下示例: 为了更好的理解该场景,我们再详细描绘一下: 本场景包括4个页面:动态广场.个人中心.我的动态.动态详情 首先,进入动态广场页,请求加载数据,展示动态列表,其中,我们用绿色内阴影区分该条动态是"我的",其他未加内阴影的表示是"别人的": 然后,进入个人中心页,请求加载数据,展示获赞数量: 点击我的动态,进入我的动态页,请求加载数据,展示我的动态列表: 点

  • 详解小程序云开发数据库

    在云控制台操作云数据库,即创建数据库和插入数据等操作. 云开发数据库提供的数据类型:string.number.object.array.bool.GeoPoint(地理位置点).Date(时间).Null 其中的Date表示时间,精确到毫秒.小程序端用Javascript内置Date对象创建的时间是客户端时间,在需要用服务端时间的时候,用API中提供的serverDate对象来创建服务端当前的时间标记. GeoPoint:用于表示地理位置点,经纬度唯一标记一个点,可以把这个地理位置理解为平面直

  • 详解小程序退出页面时清除定时器

    由于小程序页面退出时,定时器和长连接等不会自动清除断开,所以需要我们在生命周期函数中手动清除 但是定时器定义在函数中,我们无法在函数外清除,所以为了解决这个问题,我们需要把定时器定义在data中 比如:Loadingtime是一个定时器,在data中定义Loadingtime:''. 然后在time方法中使用 在onUnload监听页面卸载生命周期函数中清除 如此在退出该页面时,就可以清除该定时器了 以上所述是小编给大家介绍的小程序退出页面时清除定时器详解整合,希望对大家有所帮助,如果大家有任何

  • 详解小程序设置缓存并且不覆盖原有数据

    最近在写小程序的小项目,因为是刚上手小程序,这途中遇到了许多问题,所幸在自己的坚持不懈下基本都得到了解决,今天就记录一下怎么设置缓存数据并且不覆盖吧,如果有错误的地方麻烦大家指正,互相学习一下! 这是官方的关于缓存的说明,它会覆盖掉之前的内容.我还是直接上源码吧 这是writecomment.js文件 Page({ /** * 页面的初始数据 */ data: { }, submit: function (event) { var writecomment = event.detail.valu

随机推荐