用Python实现简单的人脸识别功能步骤详解

前言

让我的电脑认识我,我的电脑只有认识我,才配称之为我的电脑!

今天,我们用Python实现简单的人脸识别技术!

Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的。这里介绍的是准确性比较高的一种。

一、首先

梳理一下实现人脸识别需要进行的步骤:

流程大致如此,在此之前,要先让人脸被准确的找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分类器,网上种类较全,分类准确度也比较高,我们也可以节约在这方面花的时间。

ps: 博主的宝贝来源已经放在下面链接里啦~

推荐:GitHub项目

https://github.com/opencv/opencv/tree/master/data/haarcascades

既然用的是python,那自然少不了包的使用了,在看代码之前,我们先将整个项目所需要的包罗列一下:

· CV2(Opencv):图像识别,摄像头调用

· os:文件操作

· numpy:NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库

· PIL:Python Imaging Library,Python平台事实上图像处理的标准库

二、接下来

1. 对照人脸获取

#-----获取人脸样本-----
import cv2

#调用笔记本内置摄像头,参数为0,如果有其他的摄像头可以调整参数为1,2
cap = cv2.VideoCapture(0)
#调用人脸分类器,要根据实际路径调整3
face_detector = cv2.CascadeClassifier(r'X:/Users/73950/Desktop/FaceRec/haarcascade_frontalface_default.xml') #待更改
#为即将录入的脸标记一个id
face_id = input('\n User data input,Look at the camera and wait ...')
#sampleNum用来计数样本数目
count = 0

while True:
 #从摄像头读取图片
 success,img = cap.read()
 #转为灰度图片,减少程序符合,提高识别度
 if success is True:
 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 else:
 break
 #检测人脸,将每一帧摄像头记录的数据带入OpenCv中,让Classifier判断人脸
 #其中gray为要检测的灰度图像,1.3为每次图像尺寸减小的比例,5为minNeighbors
 faces = face_detector.detectMultiScale(gray, 1.3, 5)

 #框选人脸,for循环保证一个能检测的实时动态视频流
 for (x, y, w, h) in faces:
 #xy为左上角的坐标,w为宽,h为高,用rectangle为人脸标记画框
 cv2.rectangle(img, (x, y), (x+w, y+w), (255, 0, 0))
 #成功框选则样本数增加
 count += 1
 #保存图像,把灰度图片看成二维数组来检测人脸区域
 #(这里是建立了data的文件夹,当然也可以设置为其他路径或者调用数据库)
 cv2.imwrite("data/User."+str(face_id)+'.'+str(count)+'.jpg',gray[y:y+h,x:x+w])
 #显示图片
 cv2.imshow('image',img)
 #保持画面的连续。waitkey方法可以绑定按键保证画面的收放,通过q键退出摄像
 k = cv2.waitKey(1)
 if k == '27':
 break
 #或者得到800个样本后退出摄像,这里可以根据实际情况修改数据量,实际测试后800张的效果是比较理想的
 elif count >= 800:
 break

#关闭摄像头,释放资源
cap.realease()
cv2.destroyAllWindows()

经博主测试,在执行

“face_detector = cv2.CascadeClssifier(r'C:\Users\admin\Desktop\python\data\haarcascade_frontalface_default.xml')”此语句时,实际路径中的目录名尽量不要有中文字符出现,否则容易报错。

这样,你的电脑就能看到你啦!

2. 通过算法建立对照模型

本次所用的算法为opencv中所自带的算法,opencv较新版本中(我使用的是2.4.8)提供了一个FaceRecognizer类,里面有相关的一些人脸识别的算法及函数接口,其中包括三种人脸识别算法(我们采用的是第三种)

1.eigenface

2.fisherface

3.LBPHFaceRecognizer

LBP是一种特征提取方式,能提取出图像的局部的纹理特征,最开始的LBP算子是在3X3窗口中,取中心像素的像素值为阀值,与其周围八个像素点的像素值比较,若像素点的像素值大于阀值,则此像素点被标记为1,否则标记为0。这样就能得到一个八位二进制的码,转换为十进制即LBP码,于是得到了这个窗口的LBP值,用这个值来反映这个窗口内的纹理信息。

LBPH是在原始LBP上的一个改进,在opencv支持下我们可以直接调用函数直接创建一个LBPH人脸识别的模型。

我们在前一部分的同目录下创建一个Python文件,文件名为trainner.py,用于编写数据集生成脚本。同目录下,创建一个文件夹,名为trainner,用于存放我们训练后的识别器。

#-----建立模型、创建数据集-----#-----建立模型、创建数据集-----

import os
import cv2
import numpy as np
from PIL import Image
#导入pillow库,用于处理图像
#设置之前收集好的数据文件路径
path = 'data'

#初始化识别的方法
recog = cv2.face.LBPHFaceRecognizer_create()

#调用熟悉的人脸分类器
detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

#创建一个函数,用于从数据集文件夹中获取训练图片,并获取id
#注意图片的命名格式为User.id.sampleNum
def get_images_and_labels(path):
 image_paths = [os.path.join(path,f) for f in os.listdir(path)]
 #新建连个list用于存放
 face_samples = []
 ids = []

 #遍历图片路径,导入图片和id添加到list中
 for image_path in image_paths:

 #通过图片路径将其转换为灰度图片
 img = Image.open(image_path).convert('L')

 #将图片转化为数组
 img_np = np.array(img,'uint8')

 if os.path.split(image_path)[-1].split(".")[-1] != 'jpg':
  continue

 #为了获取id,将图片和路径分裂并获取
 id = int(os.path.split(image_path)[-1].split(".")[1])
 faces = detector.detectMultiScale(img_np)

 #将获取的图片和id添加到list中
 for(x,y,w,h) in faces:
  face_samples.append(img_np[y:y+h,x:x+w])
  ids.append(id)
 return face_samples,ids

#调用函数并将数据喂给识别器训练
print('Training...')
faces,ids = get_images_and_labels(path)
#训练模型
recog.train(faces,np.array(ids))
#保存模型
recog.save('trainner/trainner.yml')

这就让电脑认识到你是与众不同的那颗星~

3. 识别

检测,校验,输出其实都是识别的这一过程,与前两个过程不同,这是涉及实际使用的过程,所以我们把他整合放在一个统一的一个文件内。

#-----检测、校验并输出结果-----
import cv2

#准备好识别方法
recognizer = cv2.face.LBPHFaceRecognizer_create()

#使用之前训练好的模型
recognizer.read('trainner/trainner.yml')

#再次调用人脸分类器
cascade_path = "haarcascade_frontalface_default.xml"
face_cascade = cv2.CascadeClassifier(cascade_path)

#加载一个字体,用于识别后,在图片上标注出对象的名字
font = cv2.FONT_HERSHEY_SIMPLEX

idnum = 0
#设置好与ID号码对应的用户名,如下,如0对应的就是初始

names = ['初始','admin','user1','user2','user3']

#调用摄像头
cam = cv2.VideoCapture(0)
minW = 0.1*cam.get(3)
minH = 0.1*cam.get(4)

while True:
 ret,img = cam.read()
 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 #识别人脸
 faces = face_cascade.detectMultiScale(
  gray,
  scaleFactor = 1.2,
  minNeighbors = 5,
  minSize = (int(minW),int(minH))
  )
 #进行校验
 for(x,y,w,h) in faces:
 cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
 idnum,confidence = recognizer.predict(gray[y:y+h,x:x+w])

 #计算出一个检验结果
 if confidence < 100:
  idum = names[idnum]
  confidence = "{0}%",format(round(100-confidence))
 else:
  idum = "unknown"
  confidence = "{0}%",format(round(100-confidence))

 #输出检验结果以及用户名
 cv2.putText(img,str(idum),(x+5,y-5),font,1,(0,0,255),1)
 cv2.putText(img,str(confidence),(x+5,y+h-5),font,1,(0,0,0),1)

 #展示结果
 cv2.imshow('camera',img)
 k = cv2.waitKey(20)
 if k == 27:
  break

#释放资源
cam.release()
cv2.destroyAllWindows()

现在,你的电脑就能识别出你来啦!

通过其他组合也可以实现开机检测等多种功能,你学会了吗?

下面是博主审稿时的测试结果以及出现的一些问题哦~希望对大家有帮助(呲牙.jpg)

测试结果:

博主审稿测试过程中出现的问题:

(1)版本问题

解决方法:经过博主无数次的失败,提示大家最好安装python2.7,可以直接使用 pip install numpy 以及pip install opencv-python安装numpy 以及对应python版本的opencv

(如果使用的是Anaconda2,pip相关命令可在开始菜单Anaconda2文件夹下的Anaconda Prompt中输入)

点击推文中给出的链接,将github中的文件下载后放至编译文件所在的文件夹下,并更改代码中的相关目录

(2)如果提示“module' object has no attribute 'face'”

解决方法:可以输入 pip install opencv-contrib-python解决,如果提示需要commission,可以在后面加上 --user,即 pip install opencv-contrib-python --user

到此这篇关于用Python实现简单的人脸识别功能步骤详解 附源码的文章就介绍到这了,更多相关Python实现人脸识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python实现人脸识别代码

    从实时视频流中识别出人脸区域,从原理上看,其依然属于机器学习的领域之一,本质上与谷歌利用深度学习识别出猫没有什么区别.程序通过大量的人脸图片数据进行训练,利用数学算法建立建立可靠的人脸特征模型,如此即可识别出人脸.幸运的是,这些工作OpenCV已经帮我们做了,我们只需调用对应的API函数即可,先给出代码: #-*- coding: utf-8 -*- import cv2 import sys from PIL import Image def CatchUsbVideo(window_name

  • Python 40行代码实现人脸识别功能

    前言 很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了.这些人里包括曾经的我自己.其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难.今天我们就来看看如何在40行代码以内简单地实现人脸识别. 一点区分 对于大部分人来说,区分人脸检测和人脸识别完全不是问题.但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的.其实,人脸检测解决的问题是确定一张图上有木有人脸,而人

  • Python3 利用face_recognition实现人脸识别的方法

    前言 之前实践了下face++在线人脸识别版本,这回做一下离线版本.github 上面有关于face_recognition的相关资料,本人只是做个搬运工,对其中的一些内容进行搬运,对其中一些例子进行实现. 官方描述: face_recognition是一个强大.简单.易上手的人脸识别开源项目,并且配备了完整的开发文档和应用案例,特别是兼容树莓派系统.本项目是世界上最简洁的人脸识别库,你可以使用Python和命令行工具提取.识别.操作人脸.本项目的人脸识别是基于业内领先的C++开源库 dlib中

  • Python基于Opencv来快速实现人脸识别过程详解(完整版)

    前言 随着人工智能的日益火热,计算机视觉领域发展迅速,尤其在人脸识别或物体检测方向更为广泛,今天就为大家带来最基础的人脸识别基础,从一个个函数开始走进这个奥妙的世界. 首先看一下本实验需要的数据集,为了简便我们只进行两个人的识别,选取了beyond乐队的主唱黄家驹和贝斯手黄家强,这哥俩长得有几分神似,这也是对人脸识别的一个考验: 两个文件夹,一个为训练数据集,一个为测试数据集,训练数据集中有两个文件夹0和1,之前看一些资料有说这里要遵循"slabel"命名规则,但后面处理起来比较麻烦,

  • python实现人脸识别经典算法(一) 特征脸法

    近来想要做一做人脸识别相关的内容,主要是想集成一个系统,看到opencv已经集成了三种性能较好的算法,但是还是想自己动手试一下,毕竟算法都比较初级. 操作环境:python2.7 第三方库:opencv for python.numpy 第一种比较经典的算法就是特征脸法,本质上其实就是PCA降维,这种算法的基本思路是,把二维的图像先灰度化,转化为一通道的图像,之后再把它首尾相接转化为一个列向量,假设图像大小是20*20的,那么这个向量就是400维,理论上讲组织成一个向量,就可以应用任何机器学习算

  • Python人脸识别第三方库face_recognition接口说明文档

    1. 查找图像中出现的人脸 代码示例: #导入face_recognition模块 import face_recognition #将jpg文件加载到numpy数组中 image = face_recognition.load_image_file("your_file.jpg") #查找图片中人脸(上下左右)的位置,图像中可能有多个人脸 #face_locations的值类似[(135,536,198,474),()] Face_locations = face_recogniti

  • 用Python实现简单的人脸识别功能步骤详解

    前言 让我的电脑认识我,我的电脑只有认识我,才配称之为我的电脑! 今天,我们用Python实现简单的人脸识别技术! Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的.这里介绍的是准确性比较高的一种. 一.首先 梳理一下实现人脸识别需要进行的步骤: 流程大致如此,在此之前,要先让人脸被准确的找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分类器,网上种类较全,分类准确度也比较高,我们也可以节约在这方面花

  • 使用Python实现简单的人脸识别功能(附源码)

    目录 前言 一.首先 二.接下来 1.对照人脸获取 2. 通过算法建立对照模型 3.识别 前言 今天,我们用Python实现简单的人脸识别技术! Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的.这里介绍的是准确性比较高的一种. 一.首先 梳理一下实现人脸识别需要进行的步骤: 流程大致如此,在此之前,要先让人脸被准确的找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分类器,网上种类较全,分类准确度也比

  • 基于Python实现简单的人脸识别系统

    目录 前言 基本原理 代码实现 创建虚拟环境 安装必要的库 前言 最近又多了不少朋友关注,先在这里谢谢大家.关注我的朋友大多数都是大学生,而且我简单看了一下,低年级的大学生居多,大多数都是为了完成课程设计,作为一个过来人,还是希望大家平时能多抽出点时间学习一下,这种临时抱佛脚的策略要少用嗷.今天我们来python实现一个人脸识别系统,主要是借助了dlib这个库,相当于我们直接调用现成的库来进行人脸识别,就省去了之前教程中的数据收集和模型训练的步骤了. B站视频:用300行代码实现人脸识别系统_哔

  • python利用Opencv实现人脸识别功能

    本文实例为大家分享了python利用Opencv实现人脸识别功能的具体代码,供大家参考,具体内容如下 首先:需要在在自己本地安装opencv具体步骤可以问度娘 如果从事于开发中的话建议用第三方的人脸识别(推荐阿里) 1.视频流中进行人脸识别 # -*- coding: utf-8 -*- import cv2 import sys from PIL import Image def CatchUsbVideo(window_name, camera_idx): cv2.namedWindow(w

  • Python+OpenCV实现信用卡数字识别的方法详解

    目录 一.模板图像处理 二.信用卡图片预处理 一.模板图像处理 (1)灰度图.二值图转化 template = cv2.imread('C:/Users/bwy/Desktop/number.png') template_gray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY) cv_show('template_gray', template_gray) # 形成二值图像,因为要做轮廓检测 ret, template_thresh = cv2.thre

  • iOS 10 和Xcode8 一起 创建 Siri 功能步骤详解(OC写的 )

    iOS 10 出来之后,我们开发者也可以使用类似Siri的功能..让我们来看看怎么使用吧,其实他是使用Siri里面的一个语音识别框架Speech framework. 让我们来看看 一些 主要的代码吧. 我们需要一个 UITextView 和 UIButton 就 能体现了. 第一步:定义属性 @interface ViewController () <SFSpeechRecognizerDelegate> @property (strong, nonatomic) UIButton *sir

  • python实现微信跳一跳辅助工具步骤详解

    说明 1.windows上安装安卓模拟器,安卓版本5.1以上 2.模拟器里下载安装最新的微信6.6.1 3.最好使用python2.7,python3的pyhook包有bug,解决比较麻烦 步骤 1.windows上安装python2.7,配置好环境变量和pip 2.到这个网站下载对应版本的pyHook和pywin32 http://www.lfd.uci.edu/~gohlke/pythonlibs 2.打开cmd,安装下载好的whl文件和其他库 pip install pywin32-221

  • python调用OpenCV实现人脸识别功能

    Python调用OpenCV实现人脸识别,供大家参考,具体内容如下 硬件环境: Win10 64位 软件环境: Python版本:2.7.3 IDE:JetBrains PyCharm 2016.3.2 Python库: 1.1) opencv-python(3.2.0.6) 搭建过程: OpenCV Python库: 1. PyCharm的插件源中选择opencv-python(3.2.0.6)库安装 题外话:Python入门Tips PS1:如何安装whl文件 1.先安装PIP 2.CMD命

  • python使用百度文字识别功能方法详解

    介绍python使用百度智能去的文字识别功能,可以识别截图中的文,登陆路验证码等等., 登陆百度智能云,选择产品服务. 选择"人工智能"---文字识别. 点击创建应用. 如图下面有关于"文字识别"的各类信息,如通用文字识别每天可以名费使用50000次,文字识别高精度版本免费使用500次每天.对于一般应用应该还足够. 在创建应用界面填入必要的信息,点击"立即创建"按纽.返回后点击"管理应用"按纽. 管理应用界面主要是能看到调用接

  • Python实现多线程抓取网页功能实例详解

    本文实例讲述了Python实现多线程抓取网页功能.分享给大家供大家参考,具体如下: 最近,一直在做网络爬虫相关的东西. 看了一下开源C++写的larbin爬虫,仔细阅读了里面的设计思想和一些关键技术的实现. 1.larbin的URL去重用的很高效的bloom filter算法: 2.DNS处理,使用的adns异步的开源组件: 3.对于url队列的处理,则是用部分缓存到内存,部分写入文件的策略. 4.larbin对文件的相关操作做了很多工作 5.在larbin里有连接池,通过创建套接字,向目标站点

随机推荐