详解R语言MCMC:Metropolis-Hastings采样用于回归的贝叶斯估计

MCMC是从复杂概率模型中采样的通用技术。

  1. 蒙特卡洛
  2. 马尔可夫链
  3. Metropolis-Hastings算法

问题

如果需要计算有复杂后验pdf p(θ| y)的随机变量θ的函数f(θ)的平均值或期望值。

您可能需要计算后验概率分布p(θ)的最大值。

解决期望值的一种方法是从p(θ)绘制N个随机样本,当N足够大时,我们可以通过以下公式逼近期望值或最大值

将相同的策略应用于通过从p(θ| y)采样并取样本集中的最大值来找到argmaxp(θ| y)。


解决方法

1.1直接模拟

1.2逆CDF

1.3拒绝/接受抽样

如果我们不知道精确/标准化的pdf或非常复杂,则MCMC会派上用场。


马尔可夫链

为了模拟马尔可夫链,我们必须制定一个 过渡核T(xi,xj)。过渡核是从状态xi迁移到状态xj的概率。

马尔可夫链的收敛性意味着它具有平稳分布π。马尔可夫链的统计分布是平稳的,那么它意味着分布不会随着时间的推移而改变。

Metropolis算法

对于一个Markov链是平稳。基本上表示

处于状态x并转换为状态x'的概率必须等于处于状态x'并转换为状态x的概率

或者

方法是将转换分为两个子步骤;候选和接受拒绝。

令q(x'| x)表示 候选密度,我们可以使用概率 α(x'| x)来调整q  。

候选分布 Q(X'| X)是给定的候选X的状态X'的条件概率,

和 接受分布 α(x'| x)的条件概率接受候选的状态X'-X'。我们设计了接受概率函数,以满足详细的平衡。

该 转移概率 可以写成:

插入上一个方程式,我们有

Metropolis-Hastings算法

A的选择遵循以下逻辑。

在q下从x到x'的转移太频繁了。因此,我们应该选择α(x | x')=1。但是,为了满足 细致平稳,我们有

下一步是选择满足上述条件的接受。Metropolis-Hastings是一种常见的 选择

即,当接受度大于1时,我们总是接受,而当接受度小于1时,我们将相应地拒绝。因此,Metropolis-Hastings算法包含以下内容:

初始化:随机选择一个初始状态x;

根据q(x'| x)随机选择一个新状态x';

3.接受根据α(x'| x)的状态。如果不接受,则不会进行转移,因此无需更新任何内容。否则,转移为x';

4.转移到2,直到生成T状态;

5.保存状态x,执行2。

原则上,我们从分布P(x)提取保存的状态,因为步骤4保证它们是不相关的。必须根据候选分布等不同因素来选择T的值。 重要的是,尚不清楚应该使用哪种分布q(x'| x);必须针对当前的特定问题进行调整。


属性

Metropolis-Hastings算法的一个有趣特性是它 仅取决于比率

是候选样本x'与先前样本xt之间的概率,

是两个方向(从xt到x',反之亦然)的候选密度之比。如果候选密度对称,则等于1。

马尔可夫链从任意初始值x0开始,并且算法运行多次迭代,直到“初始状态”被“忘记”为止。这些被丢弃的样本称为预烧(burn-in)。其余的x可接受值集代表分布P(x)中的样本


Metropolis采样

一个简单的Metropolis-Hastings采样

让我们看看从 伽玛分布 模拟任意形状和比例参数,使用具有Metropolis-Hastings采样算法。

下面给出了Metropolis-Hastings采样器的函数。该链初始化为零,并在每个阶段都建议使用N(a / b,a /(b * b))个候选对象。

基于正态分布且均值和方差相同gamma的Metropolis-Hastings独立采样

从某种状态开始xt。代码中的x。在代码中提出一个新的状态x'候选计算“接受概率”

从[0,1] 得出一些均匀分布的随机数u;如果u <α接受该点,则设置xt + 1 = x'。否则,拒绝它并设置xt + 1 = xt。

MH可视化

set.seed(123)

    for (i in 2:n) {
        can <- rnorm(1, mu, sig)
        aprob <- min(1, (dgamma(can, a, b)/dgamma(x,
            a, b))/(dnorm(can, mu, sig)/dnorm(x,
            mu, sig)))
        u <- runif(1)
        if (u < aprob)
            x <- can
        vec[i] <- x

画图

设置参数。

nrep<- 54000
burnin<- 4000
shape<- 2.5
rate<-2.6

修改图,仅包含预烧期后的链

vec=vec[-(1:burnin)]
#vec=vec[burnin:length(vec)]
par(mfrow=c(2,1)) # 更改主框架,在一帧中有多少个图形
plot(ts(vec), xlab="Chain", ylab="Draws")
abline(h = mean(vec), lwd="2", col="red" )

Min. 1st Qu.  Median   Mean 3rd Qu.   Max.
0.007013 0.435600 0.724800 0.843300 1.133000 3.149000
var(vec[-(1:burnin)])
[1] 0.2976507

初始值

第一个样本 vec 是我们链的初始/起始值。我们可以更改它,以查看收敛是否发生了变化。

  x <- 3*a/b
    vec[1] <- x

选择方案

如果候选密度与目标分布P(x)的形状匹配,即q(x'| xt)≈P(x')q(x'|),则该算法效果最佳。 xt)≈P(x')。如果使用正态候选密度q,则在预烧期间必须调整方差参数σ2。

通常,这是通过计算接受率来完成的,接受率是在最后N个样本的窗口中接受的候选样本的比例。

如果σ2太大,则接受率将非常低,因为候选可能落在概率密度低得多的区域中,因此a1将非常小,且链将收敛得非常慢。



示例2:回归的贝叶斯估计

Metropolis-Hastings采样用于贝叶斯估计回归模型。



设定参数



DGP和图

# 创建独立的x值,大约为零
x <- (-(Size-1)/2):((Size-1)/2)
# 根据ax + b + N(0,sd)创建相关值
y <- trueA * x + trueB + rnorm(n=Size,mean=0,sd=trueSd)



正态分布拟然

pred = a*x + b
  singlelikelihoods = dnorm(y, mean = pred, sd = sd, log = T)
  sumll = sum(singlelikelihoods)


为什么使用对数

似然函数中概率的对数,这也是我求和所有数据点的概率(乘积的对数等于对数之和)的原因。

我们为什么要做这个?强烈建议这样做,因为许多小概率相乘的概率会变得很小。在某个阶段,计算机程序会陷入数值四舍五入或下溢问题。

因此, 当您编写概率时,请始终使用对数



示例:绘制斜率a的似然曲线

# 示例:绘制斜率a的似然曲线
plot (seq(3, 7, by=.05), slopelikelihoods , type="l")


先验分布

这三个参数的均匀分布和正态分布。

# 先验分布

# 更改优先级,log为True,因此这些均为log
density/likelihood
  aprior = dunif(a, min=0, max=10, log = T)
  bprior = dnorm(b, sd = 2, log = T)
  sdprior = dunif(sd, min=0, max=30, log = T)

后验

先验和概率的乘积是MCMC将要处理的实际量。此函数称为后验函数。同样,这里我们使用和,因为我们使用对数。

posterior <- function(param){
  return (likelihood(param) + prior(param))
}

Metropolis算法

该算法是 后验密度采样最常见的贝叶斯统计应用之一 。

  1. 上面定义的后验。
  2. 从随机参数值开始
  3. 根据某个候选函数的概率密度,选择一个接近旧值的新参数值
  4. 以概率p(new)/ p(old)跳到这个新点,其中p是目标函数,并且p> 1也意味着跳跃
  5. 请注意,我们有一个 对称的跳跃/候选分布 q(x'| x)。

标准差σ是固定的。

所以接受概率等于

######## Metropolis 算法 ################

  for (i in 1:iterations){

    probab = exp(posterior(proposal) - posterior(chain[i,]))
    if (runif(1) < probab){
      chain[i+1,] = proposal
    }else{
      chain[i+1,] = chain[i,]
    }

实施

(e)输出接受的值,并解释。

chain = metrMCMC(startvalue, 5500)

burnIn = 5000
accep = 1-mean(duplicated(chain[-(1:burnIn),]))

算法的第一步可能会因初始值而有偏差,因此通常会被丢弃来进行进一步分析(预烧期)。令人感兴趣的输出是接受率:候选多久被算法接受拒绝一次?候选函数会影响接受率:通常,候选越接近,接受率就越大。但是,非常高的接受率通常是无益的:这意味着算法在同一点上“停留”,这导致对参数空间(混合)的处理不够理想。

我们还可以更改初始值,以查看其是否更改结果/是否收敛。

startvalue = c(4,0,10)

小结

 V1       V2        V3
 Min.  :4.068  Min.  :-6.7072  Min.  : 6.787
 1st Qu.:4.913  1st Qu.:-2.6973  1st Qu.: 9.323
 Median :5.052  Median :-1.7551  Median :10.178
 Mean  :5.052  Mean  :-1.7377  Mean  :10.385
 3rd Qu.:5.193  3rd Qu.:-0.8134  3rd Qu.:11.166
 Max.  :5.989  Max.  : 4.8425  Max.  :19.223
#比较:
summary(lm(y~x))
Call:
lm(formula = y ~ x)

Residuals:
  Min   1Q Median   3Q   Max
-22.259 -6.032 -1.718  6.955 19.892 

Coefficients:
      Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.1756   1.7566 -1.808  0.081 .
x       5.0469   0.1964 25.697  <2e-16 ***
---
Signif. codes: 0 ?**?0.001 ?*?0.01 ??0.05 ??0.1 ??1

Residual standard error: 9.78 on 29 degrees of freedom
Multiple R-squared: 0.9579,  Adjusted R-squared: 0.9565
F-statistic: 660.4 on 1 and 29 DF, p-value: < 2.2e-16
summary(lm(y~x))$sigma
[1] 9.780494
coefficients(lm(y~x))[1]
(Intercept)
 -3.175555
coefficients(lm(y~x))[2]
   x
5.046873

总结:

### 总结: #######################

par(mfrow = c(2,3))
hist(chain[-(1:burnIn),1],prob=TRUE,nclass=30,col="109"
abline(v = mean(chain[-(1:burnIn),1]), lwd="2")



到此这篇关于R语言MCMC:Metropolis-Hastings采样用于回归的贝叶斯估计的文章就介绍到这了,更多相关R语言MCMC:Metropolis-Hastings采样用于回归的贝叶斯估计内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • R语言逻辑回归、ROC曲线与十折交叉验证详解

    自己整理编写的逻辑回归模板,作为学习笔记记录分享.数据集用的是14个自变量Xi,一个因变量Y的australian数据集. 1. 测试集和训练集3.7分组 australian <- read.csv("australian.csv",as.is = T,sep=",",header=TRUE) #读取行数 N = length(australian$Y) #ind=1的是0.7概率出现的行,ind=2是0.3概率出现的行 ind=sample(2,N,rep

  • R语言如何实现多元线性回归

    R小白几天的摸索 红色为输入,蓝色为输出 输入数据 先把数据用excel保存为csv格式放在"我的文档"文件夹 打开R软件,不用新建,直接写 回归计算 求三个平方和 置信区间(95%) 散点图(最显著的因变量) 拟合图 一元线性回归 结果:(看图) 变量系数  Estimate 变量系数标准误  Std. Error T检验值  t value T检验p值  Pr(>|t|) 均方根误差  Residual standard error 判定系数  R-squared 调整判定系

  • R语言时间序列TAR阈值自回归模型示例详解

    为了方便起见,这些模型通常简称为TAR模型.这些模型捕获了线性时间序列模型无法捕获的行为,例如周期,幅度相关的频率和跳跃现象.Tong和Lim(1980)使用阈值模型表明,该模型能够发现黑子数据出现的不对称周期性行为. 一阶TAR模型的示例: σ是噪声标准偏差,Yt-1是阈值变量,r是阈值参数, {et}是具有零均值和单位方差的iid随机变量序列. 每个线性子模型都称为一个机制.上面是两个机制的模型. 考虑以下简单的一阶TAR模型: #低机制参数 i1 = 0.3 p1 = 0.5 s1 = 1

  • R语言如何进行线性回归的拟合度详解

    R语言进行线性回归的拟合度. 本文只是使用 R做回归计算,查看拟合度等,不讨论 R 函数的内部公式 在R中线性回归分析的函数是lm(),基本语法是 一元回归: lm(y ~ x,data) 多元回归:lm(y ~ x1+x2+x3-,data) 创建关系模型并获取系数 x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131) y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48) # 使用lm()函数

  • R语言实现LASSO回归的方法

    Lasso回归又称为套索回归,是Robert Tibshirani于1996年提出的一种新的变量选择技术.Lasso是一种收缩估计方法,其基本思想是在回归系数的绝对值之和小于一个常数的约束条件下,使残差平方和最小化,从而能够产生某些严格等于0的回归系数,进一步得到可以解释的模型.R语言中有多个包可以实现Lasso回归,这里使用lars包实现. 1.利用lars函数实现lasso回归并可视化显示 x = as.matrix(data5[, 2:7]) #data5为自己的数据集 y = as.ma

  • R语言多元Logistic逻辑回归应用实例

    可以使用逐步过程确定多元逻辑回归.此函数选择模型以最小化AIC. 如何进行多元逻辑回归 可以使用阶梯函数通过逐步过程确定多元逻辑回归.此函数选择模型以最小化AIC. 通常建议不要盲目地遵循逐步程序,而是要使用拟合统计(AIC,AICc,BIC)比较模型,或者根据生物学或科学上合理的可用变量建立模型. 多元相关是研究潜在自变量之间关系的一种工具.例如,如果两个独立变量彼此相关,可能在最终模型中都不需要这两个变量,但可能有理由选择一个变量而不是另一个变量. 多元相关 创建数值变量的数据框 Data.

  • 详解R语言中的多项式回归、局部回归、核平滑和平滑样条回归模型

    在标准线性模型中,我们假设 .当线性假设无法满足时,可以考虑使用其他方法. 多项式回归 扩展可能是假设某些多项式函数, 同样,在标准线性模型方法(使用GLM的条件正态分布)中,参数  可以使用最小二乘法获得,其中  在  . 即使此多项式模型不是真正的多项式模型,也可能仍然是一个很好的近似值 .实际上,根据 Stone-Weierstrass定理,如果  在某个区间上是连续的,则有一个统一的近似值  ,通过多项式函数. 仅作说明,请考虑以下数据集 db = data.frame(x=xr,y=y

  • 详解R语言MCMC:Metropolis-Hastings采样用于回归的贝叶斯估计

    MCMC是从复杂概率模型中采样的通用技术. 蒙特卡洛 马尔可夫链 Metropolis-Hastings算法 问题 如果需要计算有复杂后验pdf p(θ| y)的随机变量θ的函数f(θ)的平均值或期望值. 您可能需要计算后验概率分布p(θ)的最大值. 解决期望值的一种方法是从p(θ)绘制N个随机样本,当N足够大时,我们可以通过以下公式逼近期望值或最大值 将相同的策略应用于通过从p(θ| y)采样并取样本集中的最大值来找到argmaxp(θ| y). 解决方法 1.1直接模拟 1.2逆CDF 1.

  • 详解R语言中生存分析模型与时间依赖性ROC曲线可视化

    R语言简介 R是用于统计分析.绘图的语言和操作环境.R是属于GNU系统的一个自由.免费.源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具. 人们通常使用接收者操作特征曲线(ROC)进行二元结果逻辑回归.但是,流行病学研究中感兴趣的结果通常是事件发生时间.使用随时间变化的时间依赖性ROC可以更全面地描述这种情况下的预测模型. 时间依赖性ROC定义 令 Mi为用于死亡率预测的基线(时间0)标量标记. 当随时间推移观察到结果时,其预测性能取决于评估时间 t.直观地说,在零时间测量的标记值应该

  • 详解R语言中的表达式、数学公式、特殊符号

      在R语言的绘图函数中,如果文本参数是合法的R语言表达式,那么这个表达式就被用Tex类似的规则进行文本格式化. y <- function(x) (exp(-(x^2)/2))/sqrt(2*pi) plot(y, -5, 5, main = expression(f(x) == frac(1,sqrt(2*pi))*e^(-frac(x^2,2))), lwd = 3, col = "blue") library(ggplot2) x <- seq(0, 2*pi, b

  • 详解R语言数据合并一行代码搞定

    数据的合并 需要的函数 cbind(),rbind(),bind_rows(),merge() 准备数据 我们先构造一组数据,以便下面的演示 > data1<-data.frame( + namea=c("海波","立波","秀波"), + value=c("一波","接","一波") + ) > data1 namea value 1 海波 一波 2 立波 接 3 秀

  • 详解R语言实现前向逐步回归(前向选择模型)

    目录 前向逐步回归原理 数据导入并分组 导入数据 特征与标签分开存放 前向逐步回归构建输出特征集合 从空开始一次创建属性列表 模型效果评估 前向逐步回归原理 前向逐步回归的过程是:遍历属性的一列子集,选择使模型效果最好的那一列属性.接着寻找与其组合效果最好的第二列属性,而不是遍历所有的两列子集.以此类推,每次遍历时,子集都包含上一次遍历得到的最优子集.这样,每次遍历都会选择一个新的属性添加到特征集合中,直至特征集合中特征个数不能再增加. 数据导入并分组 导入数据,将数据集抽取70%作为训练集,剩

  • 详解R语言图像处理EBImage包

    目录 什么是EBImage 1. 图像读取与保存 2.色彩管理 3.图像处理 4.空间变换 5.形态运算 6.图像分割 本文摘自<Keras深度学习:入门.实战及进阶>第四章部分章节. 什么是EBImage EBImage是R的一个扩展包,提供了用于读取.写入.处理和分析图像的通用功能,非常容易上手.EBImage包在Bioconductor中,通过以下命令进行安装. install.packages("BiocManager") BiocManager::install(

  • 详解R语言caret包trainControl函数

    目录 trainControl参数详解 源码 参数详解 示例 trainControl参数详解 源码 caret::trainControl <- function (method = "boot", number = ifelse(grepl("cv", method), 10, 25), repeats = ifelse(grepl("[d_]cv$", method), 1, NA), p = 0.75, search = "

  • 详解R语言plot函数参数合集

    最近用R语言画图,plot 函数是用的最多的函数,而他的参数非常繁多,由此总结一下,以供后续方便查阅. plot(x, y = NULL, type = "p", xlim = NULL, ylim = NULL, log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL, ann = par("ann"), axes = TRUE, frame.plot = axes, panel.

  • 详解C语言 三大循环 四大跳转 和判断语句

    三大循环for while 和 do{ }while; 四大跳转 : 无条件跳转语句 go to; 跳出循环语句 break; 继续跳出循环语句 continue; 返回值语句 return 判断语句 if,if else,if else if else if...else ifelse 组合 if(0 == x) if(0 == y) error(): else{ //program code } else到底与那个if配对 C语言有这样的规定: else 始终与同一括号内最近的未匹配的if语

随机推荐