pytorch中torch.max和Tensor.view函数用法详解
torch.max()
1.
torch.max()简单来说是返回一个tensor中的最大值。
例如:
>>> si=torch.randn(4,5) >>> print(si) tensor([[ 1.1659, -1.5195, 0.0455, 1.7610, -0.2064], [-0.3443, 2.0483, 0.6303, 0.9475, 0.4364], [-1.5268, -1.0833, 1.6847, 0.0145, -0.2088], [-0.8681, 0.1516, -0.7764, 0.8244, -1.2194]]) >>> print(torch.max(si)) tensor(2.0483)
2.
这个函数的参数中还有一个dim参数,使用方法为re = torch.max(Tensor,dim),返回的re为一个二维向量,其中re[0]为最大值的Tensor,re[1]为最大值对应的index的Tensor。
例如:
>>> print(torch.max(si,0)[0]) tensor([1.1659, 2.0483, 1.6847, 1.7610, 0.4364])
注意,Tensor的维度从0开始算起。在torch.max()中指定了dim之后,比如对于一个3x4x5的Tensor,指定dim为0后,得到的结果是维度为0的“每一行”对应位置求最大的那个值,此时输出的Tensor的维度是4x5.
对于简单的二维Tensor,如上面例子的这个4x5的Tensor。指定dim为0,则给出的结果是4行做比较之后的最大值;如果指定dim为1,则给出的结果是5列做比较之后的最大值,且此处做比较时是按照位置分别做比较,得到一个新的Tensor。
Tensor.view()
简单说就是一个把tensor 进行reshape的操作。
>>> a=torch.randn(3,4,5,7) >>> b = a.view(1,-1) >>> print(b.size()) torch.Size([1, 420])
其中参数-1表示剩下的值的个数一起构成一个维度。如上例中,第一个参数1将第一个维度的大小设定成1,后一个-1就是说第二个维度的大小=元素总数目/第一个维度的大小,此例中为3*4*5*7/1=420.
>>> d = a.view(a.size(0),a.size(1),-1) >>> print(d.size()) torch.Size([3, 4, 35]) >>> e=a.view(4,-1,5) >>> print(e.size()) torch.Size([4, 21, 5])
以上这篇pytorch中torch.max和Tensor.view函数用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
Pytorch之view及view_as使用详解
view()函数是在torch.Tensor.view()下的一个函数,可以有tensor调用,也可以有variable调用. 其作用在于返回和原tensor数据个数相同,但size不同的tensor [Numpy中的size是元素个数,但是在Pytorch中size等价为Numpy中的shape] view函数的-1参数的作用在于基于另一参数,自动计算该维度的大小 很重要的一点 view函数只能由于contiguous的张量上,具体而言,就是在内存中连续存储的张量. 具体而言,可以参看 htt
-
pytorch中tensor.expand()和tensor.expand_as()函数详解
tensor.expend()函数 >>> import torch >>> a=torch.tensor([[2],[3],[4]]) >>> print(a.size()) torch.Size([3, 1]) >>> a.expand(3,2) tensor([[2, 2], [3, 3], [4, 4]]) >>> a tensor([[2], [3], [4]]) 可以看出expand()函数括号里面为变形
-
Pytorch Tensor基本数学运算详解
1. 加法运算 示例代码: import torch # 这两个Tensor加减乘除会对b自动进行Broadcasting a = torch.rand(3, 4) b = torch.rand(4) c1 = a + b c2 = torch.add(a, b) print(c1.shape, c2.shape) print(torch.all(torch.eq(c1, c2))) 输出结果: torch.Size([3, 4]) torch.Size([3, 4]) tensor(1, dt
-
PyTorch中topk函数的用法详解
听名字就知道这个函数是用来求tensor中某个dim的前k大或者前k小的值以及对应的index. 用法 torch.topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor) input:一个tensor数据 k:指明是得到前k个数据以及其index dim: 指定在哪个维度上排序, 默认是最后一个维度 largest:如果为True,按照大到小排序: 如果为False,按照小到大排序
-
详解PyTorch中Tensor的高阶操作
条件选取:torch.where(condition, x, y) → Tensor 返回从 x 或 y 中选择元素的张量,取决于 condition 操作定义: 举个例子: >>> import torch >>> c = randn(2, 3) >>> c tensor([[ 0.0309, -1.5993, 0.1986], [-0.0699, -2.7813, -1.1828]]) >>> a = torch.ones(2,
-
pytorch中torch.max和Tensor.view函数用法详解
torch.max() 1. torch.max()简单来说是返回一个tensor中的最大值. 例如: >>> si=torch.randn(4,5) >>> print(si) tensor([[ 1.1659, -1.5195, 0.0455, 1.7610, -0.2064], [-0.3443, 2.0483, 0.6303, 0.9475, 0.4364], [-1.5268, -1.0833, 1.6847, 0.0145, -0.2088], [-0.86
-
浅谈pytorch中torch.max和F.softmax函数的维度解释
在利用torch.max函数和F.Ssoftmax函数时,对应该设置什么维度,总是有点懵,遂总结一下: 首先看看二维tensor的函数的例子: import torch import torch.nn.functional as F input = torch.randn(3,4) print(input) tensor([[-0.5526, -0.0194, 2.1469, -0.2567], [-0.3337, -0.9229, 0.0376, -0.0801], [ 1.4721, 0.1
-
pytorch中的nn.ZeroPad2d()零填充函数实例详解
在卷积神经网络中,有使用设置padding的参数,配合卷积步长,可以使得卷积后的特征图尺寸大小不发生改变,那么在手动实现图片或特征图的边界零填充时,常用的函数是nn.ZeroPad2d(),可以指定tensor的四个方向上的填充,比如左边添加1dim.右边添加2dim.上边添加3dim.下边添加4dim,即指定paddin参数为(1,2,3,4),本文中代码设置的是(3,4,5,6)如下: import torch.nn as nn import cv2 import torchvision f
-
pytorch中的卷积和池化计算方式详解
TensorFlow里面的padding只有两个选项也就是valid和same pytorch里面的padding么有这两个选项,它是数字0,1,2,3等等,默认是0 所以输出的h和w的计算方式也是稍微有一点点不同的:tf中的输出大小是和原来的大小成倍数关系,不能任意的输出大小:而nn输出大小可以通过padding进行改变 nn里面的卷积操作或者是池化操作的H和W部分都是一样的计算公式:H和W的计算 class torch.nn.MaxPool2d(kernel_size, stride=Non
-
关于pytorch中全连接神经网络搭建两种模式详解
pytorch搭建神经网络是很简单明了的,这里介绍两种自己常用的搭建模式: import torch import torch.nn as nn first: class NN(nn.Module): def __init__(self): super(NN,self).__init__() self.model=nn.Sequential( nn.Linear(30,40), nn.ReLU(), nn.Linear(40,60), nn.Tanh(), nn.Linear(60,10), n
-
JavaScript中eval()函数用法详解
eval() 函数计算 JavaScript 字符串,并把它作为脚本代码来执行. 如果参数是一个表达式,eval() 函数将执行表达式.如果参数是Javascript语句,eval()将执行 Javascript 语句. 语法 复制代码 代码如下: eval(string) 参数 描述 string 必需.要计算的字符串,其中含有要计算的 JavaScript 表达式或要执行的语句. eval()函数用法详解: 此函数可能使用的频率并不是太高,但是在某些情况下具有很大的作用,下面就介绍一下eva
-
Python中flatten( )函数及函数用法详解
flatten()函数用法 flatten是numpy.ndarray.flatten的一个函数,即返回一个一维数组. flatten只能适用于numpy对象,即array或者mat,普通的list列表不适用!. a.flatten():a是个数组,a.flatten()就是把a降到一维,默认是按行的方向降 . a.flatten().A:a是个矩阵,降维后还是个矩阵,矩阵.A(等效于矩阵.getA())变成了数组.具体看下面的例子: 1.用于array(数组)对象 >>> from n
-
pandas dataframe 中的explode函数用法详解
在使用 pandas 进行数据分析的过程中,我们常常会遇到将一行数据展开成多行的需求,多么希望能有一个类似于 hive sql 中的 explode 函数. 这个函数如下: Code # !/usr/bin/env python # -*- coding:utf-8 -*- # create on 18/4/13 import pandas as pd def dataframe_explode(dataframe, fieldname): temp_fieldname = fieldname
-
Python中非常实用的Math模块函数教程详解
目录 math模块常数 1. 圆周率 2. Tau (τ) 3. 欧拉数 4. 无限 5. 不是数字 算术函数 1. factorial() 2. ceil() 3. floor() 4. trunc() 5. isclose() 幂函数 1. exp() 2. 对数函数 其他重要的math模块功能 由于该math模块与 Python 版本一起打包,因此您不必单独安装它,直接导入: import math math模块常数 Pythonmath模块提供了多种预定义常量.访问这些常量提供了几个优点
-
Python Pandas中合并数据的5个函数使用详解
目录 join 索引一致 索引不一致 merge concat 纵向拼接 横向拼接 append combine 前几天在一个群里面,看到一位朋友,说到自己的阿里面试,被问了一些关于pandas的使用.其中一个问题是:pandas中合并数据的5中方法. 今天借着这个机会,就为大家盘点一下pandas中合并数据的5个函数.但是对于每个函数,我这里不打算详细说明,具体用法大家可以参考pandas官当文档. join主要用于基于索引的横向合并拼接: merge主要用于基于指定列的横向合并拼接: con
随机推荐
- javascript 网页编辑框及拖拽图片的问题
- MySQL的事件调度器使用介绍
- Java中使用JavaMail多发邮件及邮件的验证和附件实现
- Python 代码性能优化技巧分享
- PHP数组函数知识汇总
- JavaScript隐式类型转换
- ajax+php中文乱码解决办法
- 利用浏览器的Javascript控制台调试PHP程序
- 详解JavaScript跨域总结与解决办法
- JavaScript中将数组进行合并的基本方法讲解
- JQuery EasyUI 数字格式化处理示例
- IBM服务器系统安装傻瓜教程(详细图解39张)
- 查看linux文件系统块大小的实现方法
- Android 组合控件实现布局的复用的方法
- java实现百度坐标的摩卡托坐标与火星坐标转换的示例
- NATPAT在校园网中的应用
- Java编程IP地址和数字相互转换代码示例
- Linux启动jar包的shell脚本
- 图书管理系统java代码实现
- Node.js实现简单的爬取的示例代码