pytorch 实现tensor与numpy数组转换
看代码,tensor转numpy:
a = torch.ones(2,2) b = a.numpy() c=np.array(a) #也可以转numpy数组 print(type(a)) print(type(b)) print(a) print(b)
输出为:
<class ‘torch.Tensor'> <class ‘numpy.ndarray'> tensor([[1., 1.], [1., 1.]]) [[1. 1.] [1. 1.]]
numpy转tensor:
import torch import numpy as np a = np.ones(5) b = torch.from_numpy(a) c=torch.Tensor(a) #也可以转pytorch Tensor print(type(a)) print(type(b)) print(a) print(b)
输出为:
<class ‘numpy.ndarray'> <class ‘torch.Tensor'> [1. 1. 1. 1. 1.] tensor([1., 1., 1., 1., 1.], dtype=torch.float64)
可见pytorch的tensor对象与numpy数组是可以相互转换的,且numpy数组的默认类型是double
以上这篇pytorch 实现tensor与numpy数组转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
Pytorch中的variable, tensor与numpy相互转化的方法
在使用pytorch作为深度学习的框架时,经常会遇到变量variable.张量tensor与矩阵numpy的类型的相互转化的问题,本章结合这实际图像对此转化方法进行实现. 1.加载需要用到的模块 import torch from torch.autograd import Variable import matplotlib.pyplot as plt import matplotlib.image as mpimg 2.显示图片与图片中的一部分区域 test_img = mpimg.imre
-
详解PyTorch中Tensor的高阶操作
条件选取:torch.where(condition, x, y) → Tensor 返回从 x 或 y 中选择元素的张量,取决于 condition 操作定义: 举个例子: >>> import torch >>> c = randn(2, 3) >>> c tensor([[ 0.0309, -1.5993, 0.1986], [-0.0699, -2.7813, -1.1828]]) >>> a = torch.ones(2,
-
Pytorch 之修改Tensor部分值方式
一:背景引入 对于一张图片,怎样修改局部像素值? 二:利用Tensor方法 比如输入全零tensor,可认为为黑色图片 >>> n=torch.FloatTensor(3,3,4).fill_(0) >>> n tensor([[[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]], [[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]], [[0., 0., 0
-
PyTorch中Tensor的维度变换实现
对于 PyTorch 的基本数据对象 Tensor (张量),在处理问题时,需要经常改变数据的维度,以便于后期的计算和进一步处理,本文旨在列举一些维度变换的方法并举例,方便大家查看. 维度查看:torch.Tensor.size() 查看当前 tensor 的维度 举个例子: >>> import torch >>> a = torch.Tensor([[[1, 2], [3, 4], [5, 6]]]) >>> a.size() torch.Size
-
pytorch中tensor的合并与截取方法
合并: torch.cat(inputs=(a, b), dimension=1) e.g. x = torch.cat((x,y), 0) 沿x轴合并 截取: x[:, 2:4] 以上这篇pytorch中tensor的合并与截取方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.
-
pytorch 实现tensor与numpy数组转换
看代码,tensor转numpy: a = torch.ones(2,2) b = a.numpy() c=np.array(a) #也可以转numpy数组 print(type(a)) print(type(b)) print(a) print(b) 输出为: <class 'torch.Tensor'> <class 'numpy.ndarray'> tensor([[1., 1.], [1., 1.]]) [[1. 1.] [1. 1.]] numpy转tensor: imp
-
Pytorch之Tensor和Numpy之间的转换的实现方法
为什么要相互转换: 1. 要对tensor进行操作,需要先启动一个Session,否则,我们无法对一个tensor比如一个tensor常量重新赋值或是做一些判断操作,所以如果将它转化为numpy数组就好处理了.下面一个小程序讲述了将tensor转化为numpy数组,以及又重新还原为tensor: 2. Torch的Tensor和numpy的array会共享他们的存储空间,修改一个会导致另外的一个也被修改. 学习链接:https://github.com/chenyuntc/pytorch-boo
-
pytorch实现Tensor变量之间的转换
系统默认是torch.FloatTensor类型 data = torch.Tensor(2,3)是一个2*3的张量,类型为FloatTensor data.cuda()就转换为GPU的张量类型,torch.cuda.FloatTensor类型 (1) CPU或GPU之间的张量转换 在Tensor后加long(), int(), double(),float(),byte()等函数就能将Tensor进行类型转换type()函数, data为Tensor数据类型,data.type()为给出dat
-
pytorch关于Tensor的数据类型说明
目录 关于Tensor的数据类型说明 pytorch Tensor变形函数 Tensor的排序与取极值 Tensor与NumPy转换 关于Tensor的数据类型说明 1. 32位浮点型:torch.FloatTensor a=torch.Tensor( [[2,3],[4,8],[7,9]], ) print "a:",a print "a.size():",a.size() print "a.dtype:",a.dtype b=torch.Fl
-
讲解Python3中NumPy数组寻找特定元素下标的两种方法
引子 Matlab中有一个函数叫做find,可以很方便地寻找数组内特定元素的下标,即:Find indices and values of nonzero elements. 这个函数非常有用.比如,我们想计算图1中点Q(x0, y0)抛物线的最短距离.一个可以实施的方法是:计算出抛物线上所有点到Q点的距离,找到最小值,用find函数找到最小值对应的下标,即M点横坐标和纵坐标对应的元素的下标,M点到Q点的距离就是最短距离. 首先给出Matlab使用find函数实现的代码: a = linspac
-
python、PyTorch图像读取与numpy转换实例
Tensor转为numpy np.array(Tensor) numpy转换为Tensor torch.Tensor(numpy.darray) PIL.Image.Image转换成numpy np.array(PIL.Image.Image) numpy 转换成PIL.Image.Image Image.fromarray(numpy.ndarray) 首先需要保证numpy.ndarray 转换成np.uint8型 numpy.astype(np.uint8),像素值[0,255]. 同时灰
-
Python快速转换numpy数组中Nan和Inf的方法实例说明
在使用numpy数组的过程中时常会出现nan或者inf的元素,可能会造成数值计算时的一些错误.这里提供一个numpy库函数的用法,使nan和inf能够最简单地转换成相应的数值. numpy.nan_to_num(x): 使用0代替数组x中的nan元素,使用有限的数字代替inf元素 使用范例: >>>import numpy as np >>> a = np.array([[np.nan,np.inf],\ ... [-np.nan,-np.inf]]) >>
-
tensor和numpy的互相转换的实现示例
要对tensor进行操作,需要先启动一个Session,否则,我们无法对一个tensor比如一个tensor常量重新赋值或是做一些判断操作,所以如果将它转化为numpy数组就好处理了.下面一个小程序讲述了将tensor转化为numpy数组,以及又重新还原为tensor: import tensorflow as tf img1 = tf.constant(value=[[[[1],[2],[3],[4]],[[1],[2],[3],[4]],[[1],[2],[3],[4]],[[1],[2],
-
人工智能学习Pytorch教程Tensor基本操作示例详解
目录 一.tensor的创建 1.使用tensor 2.使用Tensor 3.随机初始化 4.其他数据生成 ①torch.full ②torch.arange ③linspace和logspace ④ones, zeros, eye ⑤torch.randperm 二.tensor的索引与切片 1.索引与切片使用方法 ①index_select ②... ③mask 三.tensor维度的变换 1.维度变换 ①torch.view ②squeeze/unsqueeze ③expand,repea
-
Pytorch四维Tensor转图片并保存方式(维度顺序调整)
目录 Pytorch四维Tensor转图片并保存 1.维度顺序转换 2.转为numpy数组 3.根据第一维度batch_size逐个读取中间结果,并存储到磁盘中 Pytorch中Tensor介绍 torch.Tensor或torch.tensor注意事项 创建tensor的四种主要方法 总结 Pytorch四维Tensor转图片并保存 最近在复现一篇论文代码的过程中,想要输出中间图片的结果图,通过debug发现在pytorch网络中是用Tensor存储的四维张量. 1.维度顺序转换 第一维代表的
随机推荐
- 使用CDN的优势以及小贴士分享
- PHP SOCKET编程详解
- thinkphp3.x中display方法及show方法的用法实例
- Yii2创建多界面主题(Theme)的方法
- Div+CSS+JS树型菜单,可刷新
- Ajax 入门之 GET 与 POST 的不同处详解
- laravel自定义分页效果
- Java编程之jdk1.4,jdk1.5和jdk1.6的区别分析(经典)
- sqlserver中获取date类的年月日语句
- 深入探究使JavaScript动画流畅的一些方法
- javascript 窗口加载蒙板 内嵌网页内容
- Android 微信图片分享功能
- javascript获取元素离文档各边距离的方法
- nginx中的limit_req限速设置配置示例
- c语言快速排序算法示例代码分享
- C++程序的执行顺序结构以及关系和逻辑运算符讲解
- 基于vue 添加axios组件,解决post传参数为null的问题
- C++实践数组作数据成员的参考
- vue 进阶之实现父子组件间的传值
- angularjs的单选框+ng-repeat的实现方法