Java数据结构与算法实现递归与回溯

目录
  • 1.什么是递归?
  • 2.代码案例一——迷宫问题
  • 3.代码案例二——八皇后问题

1.什么是递归?

简单的说: 递归就是方法自己调用自己,每次调用时传入不同的变量.递归有助于编程者解决复杂的问题,同时可以让代码变得简洁。

看个实际应用场景,迷宫问题(回溯), 递归(Recursion)

我列举两个小案例,来帮助大家理解递归,这里在给大家回顾一下递归调用机制

  • 打印问题
  • 阶乘问题
public static void test(int n) {
    if (n > 2) {
	    test(n - 1);
    }
    System.out.println("n=" + n);
}

public static int factorial(int n) {
    if (n == 1) {
        return 1;
    } else {
        return factorial(n - 1) * n;
    }
}

递归用于解决什么样的问题

  • 各种数学问题如: 8皇后问题 , 汉诺塔, 阶乘问题, 迷宫问题, 球和篮子的问题(google编程大赛)。
  • 各种算法中也会使用到递归,比如快排,归并排序,二分查找,分治算法等。
  • 将用栈解决的问题-->第归代码比较简洁。

递归需要遵守的重要规则

  • 执行一个方法时,就创建一个新的受保护的独立空间(栈空间)。
  • 方法的局部变量是独立的,不会相互影响, 比如n变量。
  • 如果方法中使用的是引用类型变量(比如数组),就会共享该引用类型的数据。
  • 递归必须向退出递归的条件逼近,否则就是无限递归,出现StackOverflowError,死龟了:)。
  • 当一个方法执行完毕,或者遇到return,就会返回,遵守谁调用,就将结果返回给谁,同时当方法执行完毕或者返回时,该方法也就执行完毕。

2.代码案例一——迷宫问题

说明:  小球得到的路径,和程序员 设置的找路策略有关即:找 路的上下左右的顺序相关再得到小球路径时,可以先 使用(下右上左),再改成(上 右下左),看看路径是不是有变化。测试回溯现象。

package com.szh.recursion;

/**
 * 走迷宫问题
 */
public class MiGong {

    //使用递归回溯来给小球找路, 说明:
    //1. map 表示地图
    //2. i,j 表示从地图的哪个位置开始出发 (1,1)
    //3. 如果小球能到 map[6][5] 位置,则说明通路找到.
    //4. 约定:当 map[i][j] 为 0 表示该点没有走过; 当为 1 表示墙; 2 表示通路可以走;
    //5. 在走迷宫时,需要确定一个策略(方法) 下->右->上->左 , 如果该点走不通,再回溯
    public static boolean setWay(int[][] map, int i, int j) {
        //此时走到了迷宫终点
        if (map[6][5] == 2) {
            return true;
        } else {
            if (map[i][j] == 0) { //如果当前这个点还没有走过
                //按照策略 下->右->上->左  走
                map[i][j] = 2;
                if (setWay(map, i + 1, j)) { //下
                    return true;
                } else if (setWay(map, i, j + 1)) { //右
                    return true;
                } else if (setWay(map, i - 1, j)) { //上
                    return true;
                } else { //左
                    return true;
                }
            } else { //map[i][j] != 0, 即只能为1、2。 1表示墙(无法走),2表示已经走过了,所以此时直接返回false
                return false;
            }
        }
    }

    //修改找路的策略,改成 上->右->下->左
    public static boolean setWay2(int[][] map, int i, int j) {
        if(map[6][5] == 2) { // 通路已经找到ok
            return true;
        } else {
            if(map[i][j] == 0) { //如果当前这个点还没有走过
                //按照策略 上->右->下->左
                map[i][j] = 2;
                if(setWay2(map, i - 1, j)) { //上
                    return true;
                } else if (setWay2(map, i, j + 1)) { //右
                    return true;
                } else if (setWay2(map, i + 1, j)) { //下
                    return true;
                } else { //左
                    return true;
                }
            } else {
                return false;
            }
        }
    }

    public static void main(String[] args) {
        //先创建一个二维数组,模拟迷宫 (地图)
        int[][] map = new int[8][7];
        //使用迷宫中的部分格子表示墙体(置1)
        //第一行和最后一行置为1
        for (int i = 0; i < 7; i++) {
            map[0][i] = 1;
            map[7][i] = 1;
        }
        //第一列和最后一列置为1
        for (int i = 0; i < 8; i++) {
            map[i][0] = 1;
            map[i][6] = 1;
        }
        //多添加两块墙体
        map[3][1] = 1;
        map[3][2] = 1;
//      map[1][2] = 1;
//		map[2][2] = 1;
        //输出地图查看
        System.out.println("原始迷宫地图为:");
        for (int i = 0; i < 8; i++) {
            for (int j = 0; j < 7; j++) {
                System.out.print(map[i][j] + " ");
            }
            System.out.println();
        }

        //使用递归回溯走迷宫
        setWay(map, 1, 1);
//        setWay2(map, 1, 1);
        System.out.println("小球走过,并标识过的地图的情况:");
        for (int i = 0; i < 8; i++) {
            for (int j = 0; j < 7; j++) {
                System.out.print(map[i][j] + " ");
            }
            System.out.println();
        }
    }
}

3.代码案例二——八皇后问题

八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。

第一个皇后先放第一行第一列。

第二个皇后放在第二行第一列、然后判断是否OK, 如果不OK,继续放在第二列、第三列、依次把所有列都放完,找到一个合适。

继续第三个皇后,还是第一列、第二列……直到第8个皇后也能放在一个不冲突的位置,算是找到了一个正确解。

当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放到第一列的所有正确解,全部得到。

然后回头继续第一个皇后放第二列,后面继续循环执行 1,2,3,4的步骤。

package com.szh.recursion;

/**
 * 八皇后问题
 */
public class Queue8 {

    //定义max表示共有多少个皇后
    private int max = 8;
    //定义数组,保存皇后放置的位置结果,比如 arr = {0, 4, 7, 5, 2, 6, 1, 3}
    int[] array = new int[max];
    //共有多少种解法
    private static int count = 0;
    //共有多少次冲突
    private static int judgeCount = 0;

    //编写一个方法,放置第n个皇后
    //特别注意: check 是 每一次递归时,进入到check中都有  for(int i = 0; i < max; i++),因此会有回溯
    private void check(int n) {
        if (n == max) { //n = 8 , 表示这8个皇后已经全部放好了
            print();
            return;
        }
        //依次放入皇后,并判断是否冲突
        for (int i = 0; i < max; i++) {
            //先把当前这个皇后 n , 放到该行的第1列
            array[n] = i;
            //判断当放置第n个皇后到i列时,是否冲突
            if (judge(n)) { // 不冲突
                //接着放n+1个皇后,即开始递归
                check(n + 1);
            }
            //如果冲突,就继续执行 array[n] = i; 即将第n个皇后,放置在本行第i列向后的那一列
        }
    }

    //查看当我们放置第n个皇后, 就去检测该皇后是否和前面已经摆放的n-1个皇后冲突
    private boolean judge(int n) {
        //每摆放一个皇后,就循环去和之前摆好的皇后位置相比较,看是否冲突
        for (int i = 0; i < n; i++) {
            //1. array[i] == array[n]  表示判断 第n个皇后是否和前面的n-1个皇后在同一列
            //2. Math.abs(n-i) == Math.abs(array[n] - array[i]) 表示判断第n个皇后是否和第i皇后是否在同一斜线
            //3. 判断是否在同一行, 没有必要,n 表示第几个皇后,这个值每次都在递增,所以必然不在同一行
            if (array[i] == array[n] || Math.abs(n - i) == Math.abs(array[n] - array[i])) {
                judgeCount++;
                return false;
            }
        }
        return true;
    }

    //打印皇后摆放的具体位置
    private void print() {
        count++;
        for (int i = 0; i < array.length; i++) {
            System.out.print(array[i] + " ");
        }
        System.out.println();
    }

    public static void main(String[] args) {
        Queue8 queue8 = new Queue8();
        queue8.check(0);
        System.out.printf("一共有%d解法\n", count);
        System.out.printf("一共判断冲突的次数%d次", judgeCount);
    }
}

这里其实对代码进行Debug就可以看出回溯的过程,我就不多说了。

到此这篇关于Java数据结构与算法实现递归与回溯的文章就介绍到这了,更多相关Java 递归与回溯内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • java迷宫算法的理解(递归分割,递归回溯,深搜,广搜)

    最近这学期做了一个java迷宫的课程设计,这里代码及其算法逻辑就分享出来. 首先简单的说一下其中我使用的算法(自动生成地图:递归分割法.递归回溯法:寻找路径:深度优先.广度优先算法) 递归分割法: 地图外面一圈被墙围住,然后在空白区域生成十字墙壁,再随机选择三面墙,将其打通,这样就能保证迷宫的流动性,再分别对刚才分好的四个区域以同样的方式执行分割,一直递归下去,直到空间不足以分割就return. 递归回溯法: 递归回溯法与深度优先算法在大致算法上其实差不多,具体只有一些细微的差别,都是通过判断当

  • Java数据结构 递归之迷宫回溯案例讲解

    问题介绍: 用二维数组表示一个迷宫,设置迷宫起点和终点,输出迷宫中的一条通路 实现思路: 二维数组表示迷宫: 0表示路且未走过.1表示墙.2表示通路,3表示已经走过但走不通 设置寻路方法setWay,传入地图和坐标参数 默认方向策略:下.右.上.左 假定传入的店没有走过且可以走通,将其值置为2,然后向下寻路,也就是将坐标 (i + 1, j) 传入寻路方法中 进行递归寻路,向下移动后,再次按照方向策略进行寻路,即再向下寻路,直到遇到死路,即下右左均走不通(因为将走过的路置为2,故向上也走不通,即

  • Java使用递归回溯完美解决八皇后的问题

    八皇后问题 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. 解决思路 ①第一个皇后先放第一行第一列. ②第二个皇后放在第二行第一列.然后判断是否OK,如果不0K, 继续放在第二列.第三列.依次把所有列都放完,找到一个合适. ③继续第三个皇后, 还是第一列.第二列-直到第8个皇后也能放在一个不冲突的位置,算是找

  • Java基于循环递归回溯实现八皇后问题算法示例

    本文实例讲述了Java基于循环递归回溯实现八皇后问题.分享给大家供大家参考,具体如下: 运行效果图如下: 棋盘接口 /** * 棋盘接口 * @author Administrator * */ public interface Piece { abstract boolean isRow(int line); abstract boolean isCol(int line,int col); } 棋盘类: /** * 棋盘 * @author Administrator * */ public

  • Java数据结构与算法实现递归与回溯

    目录 1.什么是递归? 2.代码案例一——迷宫问题 3.代码案例二——八皇后问题 1.什么是递归? 简单的说: 递归就是方法自己调用自己,每次调用时传入不同的变量.递归有助于编程者解决复杂的问题,同时可以让代码变得简洁. 看个实际应用场景,迷宫问题(回溯), 递归(Recursion) 我列举两个小案例,来帮助大家理解递归,这里在给大家回顾一下递归调用机制 打印问题 阶乘问题 public static void test(int n) { if (n > 2) { test(n - 1); }

  • 带你了解Java数据结构和算法之递归

    目录 1.递归的定义 2.求一个数的阶乘:n! 3.递归的二分查找 4.分治算法 5.汉诺塔问题 6.归并排序 7.消除递归 8.递归的有趣应用 ①.求一个数的乘方 ②.背包问题 ③.组合:选择一支队伍 9.总结 1.递归的定义 递归,就是在运行的过程中调用自己. 递归必须要有三个要素: ①.边界条件 ②.递归前进段 ③.递归返回段 当边界条件不满足时,递归前进:当边界条件满足时,递归返回. 2.求一个数的阶乘:n! 规定: ①.0!=1 ②.1!=1 ③.负数没有阶乘 上面的表达式我们先用fo

  • java数据结构与算法之快速排序详解

    本文实例讲述了java数据结构与算法之快速排序.分享给大家供大家参考,具体如下: 交换类排序的另一个方法,即快速排序. 快速排序:改变了冒泡排序中一次交换仅能消除一个逆序的局限性,是冒泡排序的一种改进:实现了一次交换可消除多个逆序.通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列. 步骤: 1.从数列中挑出一个元素,称为 "基准"(piv

  • java数据结构排序算法之归并排序详解

    本文实例讲述了java数据结构排序算法之归并排序.分享给大家供大家参考,具体如下: 在前面说的那几种排序都是将一组记录按关键字大小排成一个有序的序列,而归并排序的思想是:基于合并,将两个或两个以上有序表合并成一个新的有序表 归并排序算法:假设初始序列含有n个记录,首先将这n个记录看成n个有序的子序列,每个子序列长度为1,然后两两归并,得到n/2个长度为2(n为奇数的时候,最后一个序列的长度为1)的有序子序列.在此基础上,再对长度为2的有序子序列进行亮亮归并,得到若干个长度为4的有序子序列.如此重

  • java 数据结构与算法 (快速排序法)

    快速排序法: 顾名思议,快速排序法是实践中的一种快速的排序算法,在c++或对java基本类型的排序中特别有用.它的平均运行时间是0(N log N).该算法之所以特别快,主要是由于非常精练和高度优化的内部循环.快速排序是对冒泡法的一种改进.通过一趟排序将要排序的的数据分割成独立的两部分,其中一部分的所有数据都比另一部分所有的数据要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列. 示意图: 这里 定义最左边元素 为left 最右边元素为ri

  • java数据结构与算法之马踏棋盘

    本文实例为大家分享了java数据结构与算法之马踏棋盘的具体代码,供大家参考,具体内容如下 马踏棋盘算法也被称为骑士周游问题 将马随机放在过期象棋的8x8棋盘的某个方格中,马按走棋规则进行移动,要求每个方格只进入一次,走遍棋盘上全部64个方格 骑士周游问题结局步骤和思路 1.创建棋盘chessBoard,是一个二维数组2.将当前位置设置为已个访问,然后根据当前位置,计算马儿还能走那些位置,并放到一个集合中(ArrayList),最多8个位置3.变量ArrayList存放的所有位置,看看哪个可以走通

  • Java 数据结构与算法系列精讲之排序算法

    概述 从今天开始, 小白我将带大家开启 Java 数据结构 & 算法的新篇章. 冒泡排序 冒泡排序 (Bubble Sort) 是一种简单的排序算法. 它重复地遍历要排序的数列, 一次比较两个元素, 如果他们的顺序错误就把他们交换过来. 遍历数列的工作是重复地进行直到没有再需要交换, 也就是说该数列已经排序完成. 这个算法的名字由来是因为越小的元素会经由交换慢慢 "浮" 到数列的顶端. 冒泡排序流程: 通过比较相邻的元素, 判断两个元素位置是否需要互换 进行 n-1 次比较,

  • Java 数据结构与算法系列精讲之单向链表

    目录 概述 链表 单向链表 单向链表实现 Node类 add方法 remove方法 get方法 set方法 contain方法 main 完整代码 概述 从今天开始, 小白我将带大家开启 Jave 数据结构 & 算法的新篇章. 链表 链表 (Linked List) 是一种递归的动态数据结构. 链表以线性表的形式, 在每一个节点存放下一个节点的指针. 链表解决了数组需要先知道数据大小的缺点, 增加了节点的指针域, 空间开销较大. 链表包括三类: 单向链表 双向链表 循环链表 单向链表 单向链表

  • Java 数据结构与算法系列精讲之环形链表

    目录 概述 链表 环形链表 环形链表实现 Node类 insert方法 remove方法 main 完整代码 概述 从今天开始, 小白我将带大家开启 Java 数据结构 & 算法的新篇章. 链表 链表 (Linked List) 是一种递归的动态数据结构. 链表以线性表的形式, 在每一个节点存放下一个节点的指针. 链表解决了数组需要先知道数据大小的缺点, 增加了节点的指针域, 空间开销较大. 链表包括三类: 单向链表 双向链表 循环链表 环形链表 环形链表 (Circular Linked Li

  • Java 数据结构与算法系列精讲之汉诺塔

    概述 从今天开始, 小白我将带大家开启 Java 数据结构 & 算法的新篇章. 汉诺塔 汉诺塔 (Tower of Hanoi) 是一个源于印度的古老益智玩具. 汉诺塔由三根柱子和若干大小不同的圆盘组成. 目标是把圆盘从最左边的柱子移到最右边的柱子上. 如图: 递归 递归 (Recursion) 指的是在函数中调用自身. 递归可以帮助我们简化问题, 使用更少的代码达成目标. 汉诺塔实现 public class 汉诺塔 { // 汉诺塔实现 private static void hanoi(i

随机推荐