python中opencv支持向量机的实现

目录
  • 支持向量机
  • 理论基础
  • SVM使用介绍
    • 例子介绍
  • 完整程序

支持向量机

支持向量机(Support Vector Machine, SVM)是一种二分类模型,目标是寻找一个标准(称为超平面)对样本数据进行分割,分割的原则是确保分类最优化(类别之间的间隔最大)。

当数据集较小时,使用支持向量机进行分类非常有效。

支持向量机是最好的现成分类器之一,“现成”是指分类器不加修改即可直接使用。

在对原始数据分类的过程中,可能无法使用线性方法实现分割。支持向量机在分类时,把无法线性分割的数据映射到高维空间,然后在高维空间找到分类最优的线性分类器。

Python支持向量机的库: sk-learn , LIBSVM等

OpenCV也提供了对支持向量机的支持

理论基础

用于划分不同类别的直线,就是分类器。

构造分类器时,非常重要的一项工作就是找到最优分类器。

找到支持向量机:在已有数据中,找到离分类器最近的点,确保它们离分类器尽可能地远。

离分类器最近的点到分类器的距离称为间隔(margin)。希望间隔尽可能地大,这样分类器在处理数据时,就会更准确。

离分类器最近的那些点叫作支持向量(support vector)。 决定了分类器所在的位置。

将不可分变为可分

支持向量机会将不那么容易分类的数据通过函数映射变为可分类的。

支持向量机在处理数据时,如果在低维空间内无法完成分类,就会自动将数据映射到高维空间,使其变为(线性)可分的。简单地讲,就是对当前数据进行函数映射操作。

例如: 在分类时,通过函数f的映射,让左图中本来不能用线性分类器分类的数据变为右图中线性可分的数据。

同时: 支持向量机能够通过核函数有效地降低计算复杂度。

实际上支持向量机可以处理任何维度的数据。在不同的维度下,支持向量机都会尽可能寻找类似于二维空间中的直线的线性分类器。

例如,在二维空间,支持向量机会寻找一条能够划分当前数据的直线;在三维空间,支持向量机会寻找一个能够划分当前数据的平面(plane);在更高维的空间,支持向量机会尝试寻找一个能够划分当前数据的超平面(hyperplane)。

一般情况下,把能够可以被一条直线(更一般的情况,即一个超平面)分割的数据称为线性可分的数据,所以超平面是线性分类器。

“支持向量机”是由“支持向量”和“机器”构成的。

  • “支持向量”是离分类器最近的那些点,这些点位于最大“间隔”上。通常情况下,分类仅依靠这些点完成,而与其他点无关。
  • “机器”指的是分类器。

支持向量机是一种基于关键点的分类算法。

SVM使用介绍

在使用支持向量机模块时,需要先使用函数cv2.ml.SVM_create()生成用于后续训练的空分类器模型。

语法格式:

svm = cv2.ml.SVM_create()

获取了空分类器svm后,针对该模型使用svm.train()函数对训练数据进行训练

语法格式

训练结果= svm.train(训练数据,训练数据排列格式,训练数据的标签) 
  • 训练数据:表示原始数据,用来训练分类器。
  • 训练数据排列格式:原始数据的排列形式有按行排列(cv2.ml.ROW_SAMPLE,每一条训练数据占一行)和按列排列(cv2.ml.COL_SAMPLE,每一条训练数据占一列)两种形式
  • 训练数据的标签:原始数据的标签。
  • 训练结果:训练结果的返回值。

例如: 用于训练的数据为data,其对应的标签为label,每一条数据按行排列,对分类器模型svm进行训练,所使用的语句为:

返回值 = svm.train(data, cv2.ml.ROW_SAMPLE, label) 

完成对分类器的训练后,使用svm.predict()函数即可使用训练好的分类器模型对测试数据进行分类,其语法格式为:

(返回值,返回结果) = svm.predict(测试数据) 

OpenCV支持对多个参数的自定义,例如:可以通过setType()函数设置类别,通过setKernel()函数设置核类型,通过setC()函数设置支持向量机的参数C ( 惩罚系数,即对误差的宽容度,默认值为0 )。

例子介绍

题目: 已知员工的笔试成绩、面试成绩及对应的等级表现,根据新入职员工的笔试成绩、面试成绩预测其可能的表现。

首先构造一组随机数,并将其划分为两类,然后使用OpenCV自带的支持向量机模块完成训练和分类工作,最后将运算结果显示出来。

具体步骤:

  • 生成模拟数据

    模拟生成入职一年后表现为A级的员工入职时的笔试和面试成绩。

    构造20组笔试和面试成绩都分布在[95, 100)区间的数据对:

    a = np.random.randint(95,100, (20, 2)).astype(np.float32) 

    上述模拟成绩,在一年后对应的工作表现为A级。

    模拟生成入职一年后表现为B级的员工入职时的笔试和面试成绩。

    构造20组笔试和面试成绩都分布在[90, 95)区间的数据对:

    b = np.random.randint(90,95, (20, 2)).astype(np.float32) 

    上述模拟成绩,在一年后对应的工作表现为B级。

    最后,将两组数据合并,并使用numpy.array对其进行类型转换:

    data = np.vstack((a, b))
    data = np.array(data, dtype='float32')     
  • 构造分组标签

    为对应表现为A级的分布在[95, 100)区间的数据,构造标签“0”:

    aLabel=np.zeros((20,1)) 

    为对应表现为B级的分布在[90, 95)区间的数据,构造标签“1”:

    bLabel=np.ones((20,1)) 

    将上述标签合并,并使用numpy.array对其进行类型转换:

    label = np.vstack((aLabel, bLabel))
    label = np.array(label, dtype='int32') 
  • 训练

    用支持向量机模块对已知的数据和其对应的标签进行训练:

    svm = cv2.ml.SVM_create()
    result = svm.train(data, cv2.ml.ROW_SAMPLE, label) 
  • 分类

    生成两个随机的数据对(笔试成绩,面试成绩)用于测试。

    test = np.vstack([[98,90], [90,99]])
    test = np.array(test, dtype='float32') 

    使用函数svm.predict()对随机成绩分类:

    (p1, p2) = svm.predict(test) 
  • 显示分类结果

    将基础数据(训练数据)、用于测试的数据(测试数据)在图像上显示出来:

    plt.scatter(a[:,0], a[:,1], 80, 'g', 'o')
    plt.scatter(b[:,0], b[:,1], 80, 'b', 's')
    plt.scatter(test[:,0], test[:,1], 80, 'r', '*')
    plt.show() 

    将测试数据及预测分类结果显示出来:

    print(test)
    print(p2)

完整程序

import cv2
import numpy as np
import matplotlib.pyplot as plt
# 准备数据
a = np.random.randint(95,100, (20, 2)).astype(np.float32)
b = np.random.randint(90,95, (20, 2)).astype(np.float32)
data = np.vstack((a, b))
data = np.array(data, dtype='float32') 

# 建立分组标签,0代表A级,1代表B级
aLabel=np.zeros((20,1))
bLabel=np.ones((20,1))
label = np.vstack((aLabel, bLabel))
label = np.array(label, dtype='int32') 

# 训练
svm = cv2.ml.SVM_create()
# 属性设置,直接采用默认值即可
#svm.setType(cv2.ml.SVM_C_SVC)    # svm type
#svm.setKernel(cv2.ml.SVM_LINEAR) # line
#svm.setC(0.01)
result = svm.train(data, cv2.ml.ROW_SAMPLE, label) 

#预测
test = np.vstack([[98,90], [90,99]])
test = np.array(test, dtype='float32')
(p1, p2) = svm.predict(test)   # test 是 [[数据1],[数据2]] 结构的

# 结果
print(test)
print("res1",p2[0])
print("res2",p2[1])
plt.scatter(a[:,0], a[:,1], 80, 'g', 'o')
plt.scatter(b[:,0], b[:,1], 80, 'b', 's')
plt.scatter(test[:,0], test[:,1], 80, 'r', '*')
plt.show() 

到此这篇关于python中opencv支持向量机的实现的文章就介绍到这了,更多相关opencv 向量机内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python 机器学习之支持向量机非线性回归SVR模型

    本文介绍了python 支持向量机非线性回归SVR模型,废话不多说,具体如下: import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm from sklearn.model_selection import train_test_split def load_data_regression(): ''' 加载用于回归问题的数据集 ''' diabetes =

  • Python中支持向量机SVM的使用方法详解

    除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类.因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm. 一.导入sklearn算法包 Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明 skleran中集成了许多算法,其导入包的方式如下所示, 逻辑回归:from sklearn.linear_model import LogisticRegression 朴素贝叶斯:fro

  • Python中使用支持向量机SVM实践

    在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类(异常值检测)以及回归分析. 其具有以下特征: (1)SVM可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值.而其他分类方法都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解. (2) SVM通过最大化决策边界的边缘来实现控制模型的能力.尽管如此,用户必须提供其他参数,如使用核函数类型和引入松弛变量等. (3)SVM一般

  • Python中使用支持向量机(SVM)算法

    在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类(异常值检测)以及回归分析. 其具有以下特征: (1)SVM可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值.而其他分类方法都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解.   (2) SVM通过最大化决策边界的边缘来实现控制模型的能力.尽管如此,用户必须提供其他参数,如使用核函数类型和引入松弛变量等.   (3)S

  • Python机器学习之SVM支持向量机

    SVM支持向量机是建立于统计学习理论上的一种分类算法,适合与处理具备高维特征的数据集. SVM算法的数学原理相对比较复杂,好在由于SVM算法的研究与应用如此火爆,CSDN博客里也有大量的好文章对此进行分析,下面给出几个本人认为讲解的相当不错的: 支持向量机通俗导论(理解SVM的3层境界) JULY大牛讲的是如此详细,由浅入深层层推进,以至于关于SVM的原理,我一个字都不想写了..强烈推荐. 还有一个比较通俗的简单版本的:手把手教你实现SVM算法 SVN原理比较复杂,但是思想很简单,一句话概括,就

  • Python 支持向量机分类器的实现

    支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane) SVM使用铰链损失函数(hinge loss)计算经验风险(empirical risk)并在求解系统中加入了正则化项以优化结构风险(structural risk),是一个

  • Tensorflow使用支持向量机拟合线性回归

    支持向量机可以用来拟合线性回归. 相同的最大间隔(maximum margin)的概念应用到线性回归拟合.代替最大化分割两类目标是,最大化分割包含大部分的数据点(x,y).我们将用相同的iris数据集,展示用刚才的概念来进行花萼长度与花瓣宽度之间的线性拟合. 相关的损失函数类似于max(0,|yi-(Axi+b)|-ε).ε这里,是间隔宽度的一半,这意味着如果一个数据点在该区域,则损失等于0. # SVM Regression #---------------------------------

  • Python中的支持向量机SVM的使用(附实例代码)

    除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类.因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm. 一.导入sklearn算法包 Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明:http://scikit-learn.org/stable/auto_examples/index.html. skleran中集成了许多算法,其导入包的方式如下所示, 逻辑回归:from

  • Python机器学习应用之支持向量机的分类预测篇

    目录 1.Question? 2.Answer!——SVM 3.软间隔 4.超平面 支持向量机常用于数据分类,也可以用于数据的回归预测 1.Question? 我们经常会遇到这样的问题,给你一些属于两个类别的数据(如子图1),需要一个线性分类器将这些数据分开,有很多分法(如子图2),现在有一个问题,两个分类器,哪一个更好?为了判断好坏,我们需要引入一个准则:好的分类器不仅仅能够很好的分开已有的数据集,还能对为知的数据进行两个划分,假设现在有一个属于红色数据点的新数据(如子图3中的绿三角),可以看

  • Python SVM(支持向量机)实现方法完整示例

    本文实例讲述了Python SVM(支持向量机)实现方法.分享给大家供大家参考,具体如下: 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=>end: 结束 op1=>operation: 读入数据 op2=>operation: 格式化数据 cond=>condition: 是否达到迭代次数 op3=>operation: 寻找超平面分割最小间隔 ccond=>cond

随机推荐