Python 绘制可视化折线图

1. 用 Numpy ndarray 作为数据传入 ply

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(1000)
y = np.random.standard_normal(10)
print "y = %s"% y
x = range(len(y))
print "x=%s"% x
plt.plot(y)
plt.show()

2. 操纵坐标轴和增加网格及标签的函数

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(1000)
y = np.random.standard_normal(10)
plt.plot(y.cumsum())
plt.grid(True) ##增加格点
plt.axis('tight') # 坐标轴适应数据量 axis 设置坐标轴
plt.show()

3. plt.xlim 和 plt.ylim 设置每个坐标轴的最小值和最大值

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(1000)
y = np.random.standard_normal(20)
plt.plot(y.cumsum())
plt.grid(True) ##增加格点
plt.xlim(-1,20)
plt.ylim(np.min(y.cumsum())- 1, np.max(y.cumsum()) + 1)

plt.show()

4. 添加标题和标签 plt.title, plt.xlabe, plt.ylabel 离散点, 线

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(1000)
y = np.random.standard_normal(20)

plt.figure(figsize=(7,4)) #画布大小
plt.plot(y.cumsum(),'b',lw = 1.5) # 蓝色的线
plt.plot(y.cumsum(),'ro') #离散的点
plt.grid(True)
plt.axis('tight')
plt.xlabel('index')
plt.ylabel('value')
plt.title('A simple Plot')
plt.show()

以上就是Python 绘制可视化折线图的详细内容,更多关于Python 绘制折线图的资料请关注我们其它相关文章!

(0)

相关推荐

  • python绘制简单折线图代码示例

    1.画最简单的直线图 代码如下: import numpy as np import matplotlib.pyplot as plt x=[0,1] y=[0,1] plt.figure() plt.plot(x,y) plt.savefig("easyplot.jpg") 结果如下: 代码解释: #x轴,y轴 x=[0,1] y=[0,1] #创建绘图对象 plt.figure() #在当前绘图对象进行绘图(两个参数是x,y轴的数据) plt.plot(x,y) #保存图象 plt

  • python绘制多个曲线的折线图

    这篇文章利用的是matplotlib.pyplot.plot的工具来绘制折线图,这里先给出一个段代码和结果图: # -*- coding: UTF-8 -*- import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt #这里导入你自己的数据 #...... #...... #x_axix,train_pn_dis这些都是长度相同的list() #开始画图 sub_axix = filter(lambda

  • wxPython+Matplotlib绘制折线图表

    使用Matplotlib在wxPython的Panel上绘制曲线图,需要导入: import numpy from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas from matplotlib.figure import Figure 下面直接贴出源代码: #coding=utf-8 """ 程序的主入口 """ import wx impor

  • Python如何使用内置库matplotlib绘制折线图

    这篇文章主要介绍了Python如何使用内置库matplotlib绘制折线图,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 环境准备: 需要安装matplotlib,安装方式: pip install matplotlib 直接贴代码喽: #引入模块 from matplotlib import pyplot,font_manager #设置支持中文字体的显示 font=font_manager.FontProperties(fname="C:\

  • 使用python matploblib库绘制准确率,损失率折线图

    我就废话不多说了,大家还是直接看代码吧~ import matplotlib.pyplot as plt epochs = [0,1,2,3] acc = [4,8,6,5] loss = [3,2,1,4] plt.plot(epochs,acc,color='r',label='acc') # r表示红色 plt.plot(epochs,loss,color=(0,0,0),label='loss') #也可以用RGB值表示颜色 #####非必须内容######### plt.xlabel(

  • python使用matplotlib绘制折线图教程

    matplotlib简介 matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中. 它的文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序.因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定. 在Linux下比较著名的数据图工具还有gnuplot,这个是免费的,Python有一个包可以调用gnuplot,但是语法比较不

  • 手把手教你Python yLab的绘制折线图的画法

    Python的可视化工具有很多,数不胜数,各有优劣.本文就对其中的pylab进行介绍.之所以介绍这一款,是因为它和Matlab的强烈相似度,如果你使用过Matlab,那么相信pylab你也会很快上手. 简单的plot函数 pylab绘图,最基本的函数就是plot函数,当然如果想要将图片显示出来,需要额外添加一个show函数. 在python的绘图中,numpy是一个非常常用的工具,不太熟悉的可以参考博主的另一篇博文:[Python]Python之Numpy的超实用基础详细教程. 例如: impo

  • Python散点图与折线图绘制过程解析

    这篇文章主要介绍了Python散点图与折线图绘制过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在数据分析的过程中,经常需要将数据可视化,目前常使用的:散点图 折线图 需要import的外部包 一个是绘图 一个是字体导入 import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties 在数据处理前需要获取数据,从TXT XML csv

  • python绘制双Y轴折线图以及单Y轴双变量柱状图的实例

    近来实验室的师姐要发论文,由于论文交稿时间临近,有一些杂活儿需要处理,作为实验室资历最浅的一批,我这个实习生也就责无旁贷地帮忙当个下手.今天师姐派了一个小活,具体要求是: 给一些训练模型的迭代次数,训练精度的数据,让我做成图表形式展示出来,一方面帮助检查模型训练时的不足,另一方面来看样本数目和预测精度之间的联系,数据具体格式如下: Iteration 1500 label train test right acc 12 143 24 24 1.0 160 92 16 15 0.9375 100

  • python使用matplotlib模块绘制多条折线图、散点图

    今天想直观的展示一下数据就用到了matplotlib模块,之前都是一张图只有一条曲线,现在想同一个图片上绘制多条曲线来对比,实现很简单,具体如下: #!usr/bin/env python #encoding:utf-8 ''' __Author__:沂水寒城 功能:折线图.散点图测试 ''' import random import matplotlib import matplotlib.pyplot as plt def list2mat(data_list,w): ''' 切片.转置 '

随机推荐