通过实例解析java8中的parallelStream

这篇文章主要介绍了通过实例解析java8中的parallelStream,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

about Stream

什么是流?

Stream是java8中新增加的一个特性,被java猿统称为流.

Stream 不是集合元素,它不是数据结构并不保存数据,它是有关算法和计算的,它更像一个高级版本的 Iterator。原始版本的 Iterator,用户只能显式地一个一个遍历元素并对其执行某些操作;高级版本的 Stream,用户只要给出需要对其包含的元素执行什么操作,比如 “过滤掉长度大于 10 的字符串”、“获取每个字符串的首字母”等,Stream 会隐式地在内部进行遍历,做出相应的数据转换。

Stream 就如同一个迭代器(Iterator),单向,不可往复,数据只能遍历一次,遍历过一次后即用尽了,就好比流水从面前流过,一去不复返。

而和迭代器又不同的是,Stream 可以并行化操作,迭代器只能命令式地、串行化操作。顾名思义,当使用串行方式去遍历时,每个 item 读完后再读下一个 item。而使用并行去遍历时,数据会被分成多个段,其中每一个都在不同的线程中处理,然后将结果一起输出。Stream 的并行操作依赖于 Java7 中引入的 Fork/Join 框架(JSR166y)来拆分任务和加速处理过程。Java 的并行 API 演变历程基本如下:

  • 1.0-1.4 中的 java.lang.Thread
  • 5.0 中的 java.util.concurrent
  • 6.0 中的 Phasers 等
  • 7.0 中的 Fork/Join 框架
  • 8.0 中的 Lambda

Stream 的另外一大特点是,数据源本身可以是无限的。

parallelStream是什么

parallelStream其实就是一个并行执行的流.它通过默认的ForkJoinPool,可能提高你的多线程任务的速度.

parallelStream的作用
Stream具有平行处理能力,处理的过程会分而治之,也就是将一个大任务切分成多个小任务,这表示每个任务都是一个操作,因此像以下的程式片段:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9);
numbers.parallelStream()
    .forEach(out::println); 

你得到的展示顺序不一定会是1、2、3、4、5、6、7、8、9,而可能是任意的顺序,就forEach()这个操作來讲,如果平行处理时,希望最后顺序是按照原来Stream的数据顺序,那可以调用forEachOrdered()。例如:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9);
numbers.parallelStream()
    .forEachOrdered(out::println); 

注意:如果forEachOrdered()中间有其他如filter()的中介操作,会试着平行化处理,然后最终forEachOrdered()会以原数据顺序处理,因此,使用forEachOrdered()这类的有序处理,可能会(或完全失去)失去平行化的一些优势,实际上中介操作亦有可能如此,例如sorted()方法。

parallelStream背后的男人:ForkJoinPool

要想深入的研究parallelStream之前,那么我们必须先了解ForkJoin框架和ForkJoinPool.本文旨在parallelStream,但因为两种关系甚密,故在此简单介绍一下ForkJoinPool,如有兴趣可以更深入的去了解下ForkJoin***(当然,如果你想真正的搞透parallelStream,那么你依然需要先搞透ForkJoinPool).*

ForkJoin框架是从jdk7中新特性,它同ThreadPoolExecutor一样,也实现了Executor和ExecutorService接口。它使用了一个无限队列来保存需要执行的任务,而线程的数量则是通过构造函数传入,如果没有向构造函数中传入希望的线程数量,那么当前计算机可用的CPU数量会被设置为线程数量作为默认值。

ForkJoinPool主要用来使用分治法(Divide-and-Conquer Algorithm)来解决问题。典型的应用比如快速排序算法。这里的要点在于,ForkJoinPool需要使用相对少的线程来处理大量的任务。比如要对1000万个数据进行排序,那么会将这个任务分割成两个500万的排序任务和一个针对这两组500万数据的合并任务。以此类推,对于500万的数据也会做出同样的分割处理,到最后会设置一个阈值来规定当数据规模到多少时,停止这样的分割处理。比如,当元素的数量小于10时,会停止分割,转而使用插入排序对它们进行排序。那么到最后,所有的任务加起来会有大概2000000+个。问题的关键在于,对于一个任务而言,只有当它所有的子任务完成之后,它才能够被执行。

所以当使用ThreadPoolExecutor时,使用分治法会存在问题,因为ThreadPoolExecutor中的线程无法像任务队列中再添加一个任务并且在等待该任务完成之后再继续执行。而使用ForkJoinPool时,就能够让其中的线程创建新的任务,并挂起当前的任务,此时线程就能够从队列中选择子任务执行。

那么使用ThreadPoolExecutor或者ForkJoinPool,会有什么性能的差异呢?
首先,使用ForkJoinPool能够使用数量有限的线程来完成非常多的具有父子关系的任务,比如使用4个线程来完成超过200万个任务。但是,使用ThreadPoolExecutor时,是不可能完成的,因为ThreadPoolExecutor中的Thread无法选择优先执行子任务,需要完成200万个具有父子关系的任务时,也需要200万个线程,显然这是不可行的。

工作窃取算法

forkjoin最核心的地方就是利用了现代硬件设备多核,在一个操作时候会有空闲的cpu,那么如何利用好这个空闲的cpu就成了提高性能的关键,而这里我们要提到的工作窃取(work-stealing)算法就是整个forkjion框架的核心理念,工作窃取(work-stealing)算法是指某个线程从其他队列里窃取任务来执行。

那么为什么需要使用工作窃取算法呢?

假如我们需要做一个比较大的任务,我们可以把这个任务分割为若干互不依赖的子任务,为了减少线程间的竞争,于是把这些子任务分别放到不同的队列里,并为每个队列创建一个单独的线程来执行队列里的任务,线程和队列一一对应,比如A线程负责处理A队列里的任务。但是有的线程会先把自己队列里的任务干完,而其他线程对应的队列里还有任务等待处理。干完活的线程与其等着,不如去帮其他线程干活,于是它就去其他线程的队列里窃取一个任务来执行。而在这时它们会访问同一个队列,所以为了减少窃取任务线程和被窃取任务线程之间的竞争,通常会使用双端队列,被窃取任务线程永远从双端队列的头部拿任务执行,而窃取任务的线程永远从双端队列的尾部拿任务执行。

工作窃取算法的优点是充分利用线程进行并行计算,并减少了线程间的竞争,其缺点是在某些情况下还是存在竞争,比如双端队列里只有一个任务时。并且消耗了更多的系统资源,比如创建多个线程和多个双端队列。

用看forkjion的眼光来看ParallelStreams

上文中已经提到了在Java 8引入了自动并行化的概念。它能够让一部分Java代码自动地以并行的方式执行,也就是我们使用了ForkJoinPool的ParallelStream。

Java 8为ForkJoinPool添加了一个通用线程池,这个线程池用来处理那些没有被显式提交到任何线程池的任务。它是ForkJoinPool类型上的一个静态元素,它拥有的默认线程数量等于运行计算机上的处理器数量。当调用Arrays类上添加的新方法时,自动并行化就会发生。比如用来排序一个数组的并行快速排序,用来对一个数组中的元素进行并行遍历。自动并行化也被运用在Java 8新添加的Stream API中。

比如下面的代码用来遍历列表中的元素并执行需要的操作:

  List<UserInfo> userInfoList =
    DaoContainers.getUserInfoDAO().queryAllByList(new UserInfoModel());
  userInfoList.parallelStream().forEach(RedisUserApi::setUserIdUserInfo);

对于列表中的元素的操作都会以并行的方式执行。forEach方法会为每个元素的计算操作创建一个任务,该任务会被前文中提到的ForkJoinPool中的通用线程池处理。以上的并行计算逻辑当然也可以使用ThreadPoolExecutor完成,但是就代码的可读性和代码量而言,使用ForkJoinPool明显更胜一筹。

对于ForkJoinPool通用线程池的线程数量,通常使用默认值就可以了,即运行时计算机的处理器数量。我这里提供了一个示例的代码让你了解jvm所使用的ForkJoinPool的线程数量, 你可以可以通过设置系统属性:-Djava.util.concurrent.ForkJoinPool.common.parallelism=N (N为线程数量),来调整ForkJoinPool的线程数量,可以尝试调整成不同的参数来观察每次的输出结果:

import java.util.ArrayList;
import java.util.List;
import java.util.Set;
import java.util.concurrent.CopyOnWriteArraySet;
import java.util.concurrent.CountDownLatch;

/**
 * @description 这是一个用来让你更加熟悉parallelStream的原理的实力
 * @date 2016年10月11日18:26:55
 * @version v1.0
 * @author wangguangdong
 */
public class App {
  public static void main(String[] args) throws Exception {
    System.out.println("Hello World!");
    // 构造一个10000个元素的集合
    List<Integer> list = new ArrayList<>();
    for (int i = 0; i < 10000; i++) {
      list.add(i);
    }
    // 统计并行执行list的线程
    Set<Thread> threadSet = new CopyOnWriteArraySet<>();
    // 并行执行
    list.parallelStream().forEach(integer -> {
      Thread thread = Thread.currentThread();
      // System.out.println(thread);
      // 统计并行执行list的线程
      threadSet.add(thread);
    });
    System.out.println("threadSet一共有" + threadSet.size() + "个线程");
    System.out.println("系统一个有"+Runtime.getRuntime().availableProcessors()+"个cpu");
    List<Integer> list1 = new ArrayList<>();
    List<Integer> list2 = new ArrayList<>();
    for (int i = 0; i < 100000; i++) {
      list1.add(i);
      list2.add(i);
    }
    Set<Thread> threadSetTwo = new CopyOnWriteArraySet<>();
    CountDownLatch countDownLatch = new CountDownLatch(2);
    Thread threadA = new Thread(() -> {
      list1.parallelStream().forEach(integer -> {
        Thread thread = Thread.currentThread();
        // System.out.println("list1" + thread);
        threadSetTwo.add(thread);
      });
      countDownLatch.countDown();
    });
    Thread threadB = new Thread(() -> {
      list2.parallelStream().forEach(integer -> {
        Thread thread = Thread.currentThread();
        // System.out.println("list2" + thread);
        threadSetTwo.add(thread);
      });
      countDownLatch.countDown();
    });

    threadA.start();
    threadB.start();
    countDownLatch.await();
    System.out.print("threadSetTwo一共有" + threadSetTwo.size() + "个线程");

    System.out.println("---------------------------");
    System.out.println(threadSet);
    System.out.println(threadSetTwo);
    System.out.println("---------------------------");
    threadSetTwo.addAll(threadSet);
    System.out.println(threadSetTwo);
    System.out.println("threadSetTwo一共有" + threadSetTwo.size() + "个线程");
    System.out.println("系统一个有"+Runtime.getRuntime().availableProcessors()+"个cpu");
  }
}

出现这种现象的原因是,forEach方法用了一些小把戏。它会将执行forEach本身的线程也作为线程池中的一个工作线程。因此,即使将ForkJoinPool的通用线程池的线程数量设置为1,实际上也会有2个工作线程。因此在使用forEach的时候,线程数为1的ForkJoinPool通用线程池和线程数为2的ThreadPoolExecutor是等价的。

所以当ForkJoinPool通用线程池实际需要4个工作线程时,可以将它设置成3,那么在运行时可用的工作线程就是4了。

小结:

1. 当需要处理递归分治算法时,考虑使用ForkJoinPool。

2. 仔细设置不再进行任务划分的阈值,这个阈值对性能有影响。

3. Java 8中的一些特性会使用到ForkJoinPool中的通用线程池。在某些场合下,需要调整该线程池的默认的线程数量。

ParallelStreams 的陷阱

上文中我们已经看到了ParallelStream他强大无比的特性,但这里我们就讲告诉你ParallelStreams不是万金油,而是一把双刃剑,如果错误的使用反倒可能伤人伤己.

以下是一个我们项目里使用 parallel streams 的很常见的情况。在这个例子中,我们想同时调用不同地址的api中并且获得第一个返回的结果。

  public static String query(String q, List<String> engines) {   Optional<String> result = engines.stream().parallel().map((base) -> {
   String url = base + q;
   return WS.url(url).get();
   }).findAny();
   return result.get();
  }

可能有很多朋友在jdk7用future配合countDownLatch自己实现的这个功能,但是jdk8的朋友基本都会用上面的实现方式,那么自信深究一下究竟自己用future实现的这个功能和利用jdk8的parallelStream来实现这个功能有什么不同点呢?坑又在哪里呢?

让我们细思思考一下整个功能究竟是如何运转的。首先我们的集合元素engines 由ParallelStreams并行的去进行map操作(ParallelStreams使用JVM默认的forkJoin框架的线程池由当前线程去执行并行操作).

然而,这里需要注意的一地方是我们在调用第三方的api请求是一个响应略慢而且会阻塞操作的一个过程。所以在某时刻所有线程都会调用 get() 方法并且在那里等待结果返回.

再回过头仔细思考一下这个功能的实现过程是我们一开始想要的吗?我们是在同一时间等待所有的结果,而不是遍历这个列表按顺序等待每个回答.然而,由于ForkJoinPool workders的存在,这样平行的等待相对于使用主线程的等待会产生的一种副作用.

现在ForkJoin pool (关于forkjion的更多实现你可以去搜索引擎中去看一下他的具体实现方式) 的实现是: 它并不会因为产生了新的workers而抵消掉阻塞的workers。那么在某个时间所有 ForkJoinPool.common() 的线程都会被用光.也就是说,下一次你调用这个查询方法,就可能会在一个时间与其他的parallel stream同时运行,而导致第二个任务的性能大大受损。或者说,例如你在这个功能里是用来快速返回调用的第三方api的,而在其他的功能里是用于一些简单的数据并行计算的,但是假如你先调用了这个功能,同一时间之后调用计算的函数,那么这里forkjionPool的实现会让你计算的函数大打折扣.

不过也不要急着去吐槽ForkJoinPool的实现,在不同的情况下你可以给它一个ManagedBlocker实例并且确保它知道在一个阻塞调用中应该什么时候去抵消掉卡住的workers.现在有意思的一点是,在一个parallel stream处理中并不一定是阻塞调用会拖延程序的性能。任何被用于映射在一个集合上的长时间运行的函数都会产生同样的问题.

正如我们上面那个列子的情况分析得知,lambda的执行并不是瞬间完成的,所有使用parallel streams的程序都有可能成为阻塞程序的源头,并且在执行过程中程序中的其他部分将无法访问这些workers,这意味着任何依赖parallel streams的程序在什么别的东西占用着common ForkJoinPool时将会变得不可预知并且暗藏危机.

怎么正确使用parallelStream

如果你正在写一个其他地方都是单线程的程序并且准确地知道什么时候你应该要使用parallel streams,这样的话你可能会觉得这个问题有一点肤浅。然而,我们很多人是在处理web应用、各种不同的框架以及重量级应用服务。一个服务器是怎样被设计成一个可以支持多种独立应用的主机的?谁知道呢,给你一个可以并行的却不能控制输入的parallel stream.

很抱歉,请原谅我用的标注[怎么正确使用parallelStream],因为目前为止我也没有发现一个好的方式来让我真正的正确使用parallelStream.下面的网上写的两种方式:

一种方式是限制ForkJoinPool提供的并行数。可以通过使用-Djava.util.concurrent.ForkJoinPool.common.parallelism=1 来限制线程池的大小为1。不再从并行化中得到好处可以杜绝错误的使用它(其实这个方式还是有点搞笑的,既然这样搞那我还不如不去使用并行流)。

另一种方式就是,一个被称为工作区的可以让ForkJoinPool平行放置的 parallelStream() 实现。不幸的是现在的JDK还没有实现。

Parallel streams 是无法预测的,而且想要正确地使用它有些棘手。几乎任何parallel streams的使用都会影响程序中无关部分的性能,而且是一种无法预测的方式。。但是在调用stream.parallel() 或者parallelStream()时候在我的代码里之前我仍然会重新审视一遍他给我的程序究竟会带来什么问题,他能有多大的提升,是否有使用他的意义.

stream or parallelStream?

上面我们也看到了parallelStream所带来的隐患和好处,那么,在从stream和parallelStream方法中进行选择时,我们可以考虑以下几个问题:

1. 是否需要并行?

2. 任务之间是否是独立的?是否会引起任何竞态条件?

3. 结果是否取决于任务的调用顺序?

对于问题1,在回答这个问题之前,你需要弄清楚你要解决的问题是什么,数据量有多大,计算的特点是什么?并不是所有的问题都适合使用并发程序来求解,比如当数据量不大时,顺序执行往往比并行执行更快。毕竟,准备线程池和其它相关资源也是需要时间的。但是,当任务涉及到I/O操作并且任务之间不互相依赖时,那么并行化就是一个不错的选择。通常而言,将这类程序并行化之后,执行速度会提升好几个等级。

对于问题2,如果任务之间是独立的,并且代码中不涉及到对同一个对象的某个状态或者某个变量的更新操作,那么就表明代码是可以被并行化的。

对于问题3,由于在并行环境中任务的执行顺序是不确定的,因此对于依赖于顺序的任务而言,并行化也许不能给出正确的结果。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Java8中利用stream对map集合进行过滤的方法

    前言 Stream 是用函数式编程方式在集合类上进行复杂操作的工具,其集成了Java 8中的众多新特性之一的聚合操作,开发者可以更容易地使用Lambda表达式,并且更方便地实现对集合的查找.遍历.过滤以及常见计算等. 最近公司在大张旗鼓的进行代码审核,从中也发现自己写代码的不好习惯.一次无意的点到了公司封装的对map集合过滤的方法,发现了stream.于是研究了一下.并对原有的代码再次结合Optional进行重构下 原有方法说明 主要处理过滤条件Map对象,过滤掉了null和空字符串 等操作 这

  • 详解Java8新特性Stream之list转map及问题解决

    List集合转Map,用到的是Stream中Collectors的toMap方法:Collectors.toMap 具体用法实例如下: //声明一个List集合 List<Person> list = new ArrayList(); list.add(new Person("1001", "小A")); list.add(new Person("1002", "小B")); list.add(new Person

  • 关于Java8 parallelStream并发安全的深入讲解

    背景 Java8的stream接口极大地减少了for循环写法的复杂性,stream提供了map/reduce/collect等一系列聚合接口,还支持并发操作:parallelStream. 在爬虫开发过程中,经常会遇到遍历一个很大的集合做重复的操作,这时候如果使用串行执行会相当耗时,因此一般会采用多线程来提速.Java8的paralleStream用fork/join框架提供了并发执行能力.但是如果使用不当,很容易陷入误区. Java8的paralleStream是线程安全的吗 一个简单的例子,

  • java8 stream 操作map根据key或者value排序的实现

    引言 最近小编自己一个人在负责一个项目的后台开发,其中有一部分是统计相关的功能,所以需要一些排序或者分组的操作,之前这种操作小编觉得还是比较麻烦的,虽热有一些现成的工具类,但是工具类的写法也是比较复杂的,但是如果使用java8 stream流的话就比较简单了,并且代码量会大大的减少,下面总结几个对map的操作. 1.map 根据value排序 Map<String,BigDecimal> map =new HashMap<>(); map.put("one",

  • Java如何使用Optional与Stream取代if判空逻辑(JDK8以上)

    通过本文你可以用非常简短的代码替代业务逻辑中的判null校验,并且很容易的在出现空指针的时候进行打日志或其他操作. 注:如果对Java8新特性中的lambda表达式与Stream不熟悉的可以去补一下基础,了解概念. 首先下面代码中的List放入了很多Person对象,其中有的对象是null的,如果不加校验调用Person的getXXX()方法肯定会报空指针错误,一般我们采取的方案就是加上if判断: public class DemoUtils { public static void main(

  • java8中parallelStream性能测试及结果分析

    测试1 @BenchmarkMode(Mode.AverageTime) @OutputTimeUnit(TimeUnit.NANOSECONDS) @Warmup(iterations = 5, time = 3, timeUnit = TimeUnit.SECONDS) @Measurement(iterations = 20, time = 3, timeUnit = TimeUnit.SECONDS) @Fork(1) @State(Scope.Benchmark) public cla

  • Java中FileOutputStream流的write方法

    本文为大家分享了FileOutputStream流的write方法,供大家参考,具体内容如下 /*------------------------ FileOutputStream: ....//输出流,字节流 ....//write(byte[] b)方法: 将b.length个字节从指定字节数组写入此文件输出流中 ....//write(byte[] b, int off, int len)方法:将指定字节数组中从偏移量off开始的len个字节写入此文件输出流 ---------------

  • Java8中Lambda表达式使用和Stream API详解

    前言 Java8 的新特性:Lambda表达式.强大的 Stream API.全新时间日期 API.ConcurrentHashMap.MetaSpace.总得来说,Java8 的新特性使 Java 的运行速度更快.代码更少.便于并行.最大化减少空指针异常. 0x00. 前置数据 private List<People> peoples = null; @BeforeEach void before () { peoples = new ArrayList<>(); peoples

  • 通过实例解析java8中的parallelStream

    这篇文章主要介绍了通过实例解析java8中的parallelStream,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 about Stream 什么是流? Stream是java8中新增加的一个特性,被java猿统称为流. Stream 不是集合元素,它不是数据结构并不保存数据,它是有关算法和计算的,它更像一个高级版本的 Iterator.原始版本的 Iterator,用户只能显式地一个一个遍历元素并对其执行某些操作:高级版本的 Stream

  • 实例解析Java中的构造器初始化

    1.初始化顺序 当Java创建一个对象时,系统先为该对象的所有实例属性分配内存(前提是该类已经被加载过了),接着程序开始对这些实例属性执行初始化,其初始化顺序是:先执行初始化块或声明属性时制定的初始值,再执行构造器里制定的初始值. 在类的内部,变量定义的先后顺序决定了初始化的顺序,即时变量散布于方法定义之间,它们仍就会在任何方法(包括构造器)被调用之前得到初始化. class Window { Window(int maker) { System.out.println("Window(&quo

  • Java8 中的ParallelStream

    目录 1.Stream API 2.ParallelStreams执行原理 3.ParallelStreams注意事项 前言: 并行编程势不可挡,Java从1.7开始就提供了Fork/Join 支持并行处理.java1.8 进一步加强. 并行处理就是将任务拆分子任务,分发给多个处理器同时处理,之后合并. 1.Stream API Java 8 引入了许多特性,Stream API是其中重要的一部分.区别 InputStream OutputStream,Stream API 是处理对象流而不是字

  • 实例解析JSP中EL表达式的各种运用

    EL运算符: <%@page language="java" contentType="text/html;charset=gb2312"%> <%@page import="java.sql.*" %> <!DOCTYPE html> <html> <head> <title>El算数运算符</title> </head> <body>

  • 实例解析设计模式中的外观模式在iOS App开发中的运用

    外观模式(Facade),为子系统中的一组接口提供一个一致的界面,此模式定义 一个高层接口,这个接口使得这一子系统更加容易使用. 下面给大家展示一下类的结构图,想必大家一看就明白了: 其实这个模式中,没有类与类之间的继承关系,只是进行了简单的类引用,统一了对外的接口而已.看起来是不是很简单?废话不多说了,下面简单向大家展示一下代码吧! 注意:本文所有代码均在ARC环境下编译通过. SubSystemOne类接口 复制代码 代码如下: #import <Foundation/Foundation.

  • 实例解析MySQL中的存储过程及存储过程的调用方法

    mysql在5.1之后增加了存储过程的功能, 存储过程运行在mysql内部,语句都已经编译好了,速度比sql更快. 存储过程与mysql相当于shell和linux系统.如果你是程序员的话,那我告诉你存储过程实际上是一个方法,你只要调用这个方法,并且输入它设置好的参数就可以获取或者执行你想要的操作了. 看了如下存储过程实例,你会发现mysql存储过程和shell很像. 下面存储过程内容为:调用存储过程,并且传入用户名,密码参数.存储过程会将这她们存储到process_test表里面.看实例 一,

  • 实例解析Ruby中的数值类型以及常量

    数值类型(Number) 整型(Integer) 整型分两种,如果在31位以内(四字节),那为Fixnum实例.如果超过,即为Bignum实例. 整数范围从 -230 到 230-1 或 -262 到 262-1.在这个范围内的整数是类 Fixnum 的对象,在这个范围外的整数存储在类 Bignum 的对象中. 您可以在整数前使用一个可选的前导符号,一个可选的基础指标(0 对应 octal,0x 对应 hex,0b 对应 binary),后跟一串数字.下划线字符在数字字符串中被忽略. 您可以获取

  • 实例解析Python中的__new__特殊方法

    __new__ 方法是什么? 如果将类比喻为工厂,那么__init__()方法则是该工厂的生产工人,__init__()方法接受的初始化参 数则是生产所需原料,__init__()方法会按照方法中的语句负责将原料加工成实例以供工厂出货.而 __new__()则是生产部经理,__new__()方法可以决定是否将原料提供给该生产部工人,同时它还决定着出 货产品是否为该生产部的产品,因为这名经理可以借该工厂的名义向客户出售完全不是该工厂的产品. __new__()方法的特性: 1.__new__()方

  • 实例解析Java中的synchronized关键字与线程安全问题

    首先来回顾一下synchronized的基本使用: synchronized代码块,被修饰的代码成为同步语句块,其作用的范围是调用这个代码块的对象,我们在用synchronized关键字的时候,能缩小代码段的范围就尽量缩小,能在代码段上加同步就不要再整个方法上加同步.这叫减小锁的粒度,使代码更大程度的并发. synchronized方法,被修饰的方法成为同步方法,其作用范围是整个方法,作用对象是调用这个方法的对象. synchronized静态方法,修饰一个static静态方法,其作用范围是整个

  • 实例解析iOS中音乐播放器应用开发的基本要点

    一.调整项目的结构,导入必要的素材 调整后的项目结构如下: 二.新建两个控制器 (1)新建一个控制器,用于展示音乐文件列表界面,其继承自UITableViewController (2)新建一个控制器,用于展示播放界面,其继承自UIViewController (3)在storyboard中,把之前的控制器删除,换上一个导航控制器,设置tableViewController与之前新建的控制器类进行关联 三.音乐文件列表控制器中基本界面的搭建 (1)新建一个音乐文件的模型 根据plist文件建立模

随机推荐