keras获得model中某一层的某一个Tensor的输出维度教程

获得某层tensor的输出维度

代码如下所示:

from keras import backend as K

@wraps(Conv2D)
def my_conv(*args,**kwargs):
  new_kwargs={'kernel_regularizer':l2(5e-6)}
  new_kwargs['padding']='valid' #'same'
  new_kwargs['strides']=(2,2) if kwargs.get('strides')==(2,2) else (1,1)
  # new_kwargs['kernel_initializer']=keras.initializers.glorot_uniform(seed=0)
  new_kwargs.update(kwargs)
  return Conv2D(*args,**new_kwargs)
def conv(x,**kwargs):
  x=my_conv(**kwargs)(x)
  x=BatchNormalization(axis=-1)(x)
  x=LeakyReLU(alpha=0.05)(x)
  return x

def inception_resnet_a(x_input):
  x_short=x_input
  s1=conv(x_input,filters=32,kernel_size=(1,1))

  s2=conv(x_input,filters=32,kernel_size=(1,1))
  s2=conv(s2,filters=32,kernel_size=(3,3),padding='same')

  s3=conv(x_input,filters=32,kernel_size=(1,1))
  s3=conv(s3,filters=48,kernel_size=(3,3),padding='same')
  s3=conv(s3,filters=64,kernel_size=(3,3),padding='same')
  x=keras.layers.concatenate([s1,s2,s3])
  x=conv(x,filters=384,kernel_size=(1,1))
  x=layers.Add()([x_short,x])
  x=LeakyReLU(alpha=0.05)(x)

  print(K.int_shape(x))

使用K.int_shape(tensor_name)即可得到对应tensor的维度

以上这篇keras获得model中某一层的某一个Tensor的输出维度教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • keras获得某一层或者某层权重的输出实例

    一个例子: print("Loading vgg19 weights...") vgg_model = VGG19(include_top=False, weights='imagenet') from_vgg = dict() # 因为模型定义中的layer的名字与原始vgg名字不同,所以需要调整 from_vgg['conv1_1'] = 'block1_conv1' from_vgg['conv1_2'] = 'block1_conv2' from_vgg['conv2_1']

  • PyTorch和Keras计算模型参数的例子

    Pytorch中,变量参数,用numel得到参数数目,累加 def get_parameter_number(net): total_num = sum(p.numel() for p in net.parameters()) trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad) return {'Total': total_num, 'Trainable': trainable_num} Kera

  • 基于keras输出中间层结果的2种实现方式

    1.使用函数模型API,新建一个model,将输入和输出定义为原来的model的输入和想要的那一层的输出,然后重新进行predict. #coding=utf-8 import seaborn as sbn import pylab as plt import theano from keras.models import Sequential from keras.layers import Dense,Activation from keras.models import Model mod

  • 基于keras 模型、结构、权重保存的实现

    如何将训练好的网络进行保存,我们可以用pickle或cPickle来保存Keras模型,同时我们可以用下面的方法: 一.保存整个模型 model.save(filepath)将Keras模型和权重保存在一个HDF5文件中,该文件将包含: 模型的结构 模型的权重 训练配置(损失函数,优化器,准确率等) 优化器的状态,以便于从上次训练中断的地方 前提是已经安装python的h5py包. from keras.models import load_model 当我们再一次使用时可以model.load

  • 在keras中获取某一层上的feature map实例

    在深度学习中,如果我们想获得某一个层上的feature map,就像下面的图这样,怎么做呢? 我们的代码是使用keras写的VGG16网络,网络结构如图: 那么我们随便抽取一层的数据吧,就拿第四层的pooling以后的结果作为输出吧,参考上面的网络结构,得到的结果维度应该是[1,56,56,128]的尺度. 怎么做呢? 首先通过keras构建模型: model = VGG16(include_top=True, weights='imagenet') 然后设置输入和输出为:原始的输入和该层对应的

  • keras模型可视化,层可视化及kernel可视化实例

    keras模型可视化: model: model = Sequential() # input: 100x100 images with 3 channels -> (100, 100, 3) tensors. # this applies 32 convolution filters of size 3x3 each. model.add(ZeroPadding2D((1,1), input_shape=(38, 38, 1))) model.add(Conv2D(32, (3, 3), ac

  • 浅谈keras的深度模型训练过程及结果记录方式

    记录训练过程 history=model.fit(X_train, Y_train, epochs=epochs,batch_size=batch_size,validation_split=0.1) 将训练过程记录在history中 利用时间记录模型 import time model_id = np.int64(time.strftime('%Y%m%d%H%M', time.localtime(time.time()))) model.save('./VGG16'+str(model_id

  • 关于Keras模型可视化教程及关键问题的解决

    keras提供简单方便的模型可视化工具,只需一行代码就可以用框图的形式可视化出你搭建的网络结构.对于复杂网络而言,这个工具就是个神器呀. 这篇文章是解决win10环境下的keras模型可视化工具所遇到的问题,Linux暂时还没有尝试(不过也可以借鉴). 大致环境是: OS: win10 python==3.5.4 keras==2.2.0 pydot==1.2.4 pydot_ng==1.0.0 首先,你可以查看keras官方文档教程. from keras.utils import plot_

  • keras 特征图可视化实例(中间层)

    鉴于最近一段时间一直在折腾的CNN网络效果不太理想,主要目标是为了检测出图像中的一些关键点,可以参考人脸的关键点检测算法. 但是由于从数据集的制作是自己完成的,所以数据集质量可能有待商榷,训练效果不好的原因可能也是因为数据集没有制作好(标点实在是太累了). 于是想看看自己做的数据集在进入到网络后那些中间的隐藏层到底发生了哪些变化. 今天主要是用已经训练好的mnist模型来提前测试一下,这里的mnist模型的准确度已经达到了98%左右. 使用的比较简单的一个模型: def simple_cnn()

  • 利用keras加载训练好的.H5文件,并实现预测图片

    我就废话不多说了,直接上代码吧! import matplotlib matplotlib.use('Agg') import os from keras.models import load_model import numpy as np from PIL import Image import cv2 #加载模型h5文件 model = load_model("C:\\python\\python3_projects\\cat_dog\\cats_dogs_fifty_thousand.h

随机推荐