如何通过python实现人脸识别验证

这篇文章主要介绍了如何通过python实现人脸识别验证,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

直接上代码,此案例是根据https://github.com/caibojian/face_login修改的,识别率不怎么好,有时挡了半个脸还是成功的

# -*- coding: utf-8 -*-
# __author__="maple"
"""
       ┏┓   ┏┓
      ┏┛┻━━━┛┻┓
      ┃   ☃   ┃
      ┃ ┳┛ ┗┳ ┃
      ┃   ┻   ┃
      ┗━┓   ┏━┛
        ┃   ┗━━━┓
        ┃ 神兽保佑  ┣┓
        ┃ 永无BUG!  ┏┛
        ┗┓┓┏━┳┓┏┛
         ┃┫┫ ┃┫┫
         ┗┻┛ ┗┻┛
"""
import base64
import cv2
import time
from io import BytesIO
from tensorflow import keras
from PIL import Image
from pymongo import MongoClient
import tensorflow as tf
import face_recognition
import numpy as np
#mongodb连接
conn = MongoClient('mongodb://root:123@localhost:27017/')
db = conn.myface #连接mydb数据库,没有则自动创建
user_face = db.user_face #使用test_set集合,没有则自动创建
face_images = db.face_images

lables = []
datas = []
INPUT_NODE = 128
LATER1_NODE = 200
OUTPUT_NODE = 0
TRAIN_DATA_SIZE = 0
TEST_DATA_SIZE = 0

def generateds():
  get_out_put_node()
  train_x, train_y, test_x, test_y = np.array(datas),np.array(lables),np.array(datas),np.array(lables)
  return train_x, train_y, test_x, test_y

def get_out_put_node():
  for item in face_images.find():
    lables.append(item['user_id'])
    datas.append(item['face_encoding'])
  OUTPUT_NODE = len(set(lables))
  TRAIN_DATA_SIZE = len(lables)
  TEST_DATA_SIZE = len(lables)
  return OUTPUT_NODE, TRAIN_DATA_SIZE, TEST_DATA_SIZE

# 验证脸部信息
def predict_image(image):
  model = tf.keras.models.load_model('face_model.h5',compile=False)
  face_encode = face_recognition.face_encodings(image)
  result = []
  for j in range(len(face_encode)):
    predictions1 = model.predict(np.array(face_encode[j]).reshape(1, 128))
    print(predictions1)
    if np.max(predictions1[0]) > 0.90:
      print(np.argmax(predictions1[0]).dtype)
      pred_user = user_face.find_one({'id': int(np.argmax(predictions1[0]))})
      print('第%d张脸是%s' % (j+1, pred_user['user_name']))
      result.append(pred_user['user_name'])
  return result

# 保存脸部信息
def save_face(pic_path,uid):
  image = face_recognition.load_image_file(pic_path)
  face_encode = face_recognition.face_encodings(image)
  print(face_encode[0].shape)
  if(len(face_encode) == 1):
    face_image = {
      'user_id': uid,
      'face_encoding':face_encode[0].tolist()
    }
    face_images.insert_one(face_image)

# 训练脸部信息
def train_face():
  train_x, train_y, test_x, test_y = generateds()
  dataset = tf.data.Dataset.from_tensor_slices((train_x, train_y))
  dataset = dataset.batch(32)
  dataset = dataset.repeat()
  OUTPUT_NODE, TRAIN_DATA_SIZE, TEST_DATA_SIZE = get_out_put_node()
  model = keras.Sequential([
    keras.layers.Dense(128, activation=tf.nn.relu),
    keras.layers.Dense(128, activation=tf.nn.relu),
    keras.layers.Dense(OUTPUT_NODE, activation=tf.nn.softmax)
  ])

  model.compile(optimizer=tf.compat.v1.train.AdamOptimizer(),
        loss='sparse_categorical_crossentropy',
        metrics=['accuracy'])
  steps_per_epoch = 30
  if steps_per_epoch > len(train_x):
    steps_per_epoch = len(train_x)
  model.fit(dataset, epochs=10, steps_per_epoch=steps_per_epoch)

  model.save('face_model.h5')

def register_face(user):
  if user_face.find({"user_name": user}).count() > 0:
    print("用户已存在")
    return
  video_capture=cv2.VideoCapture(0)
  # 在MongoDB中使用sort()方法对数据进行排序,sort()方法可以通过参数指定排序的字段,并使用 1 和 -1 来指定排序的方式,其中 1 为升序,-1为降序。
  finds = user_face.find().sort([("id", -1)]).limit(1)
  uid = 0
  if finds.count() > 0:
    uid = finds[0]['id'] + 1
  print(uid)
  user_info = {
    'id': uid,
    'user_name': user,
    'create_time': time.time(),
    'update_time': time.time()
  }
  user_face.insert_one(user_info)

  while 1:
    # 获取一帧视频
    ret, frame = video_capture.read()
    # 窗口显示
    cv2.imshow('Video',frame)
    # 调整角度后连续拍5张图片
    if cv2.waitKey(1) & 0xFF == ord('q'):
      for i in range(1,6):
        cv2.imwrite('Myface{}.jpg'.format(i), frame)
        with open('Myface{}.jpg'.format(i),"rb")as f:
          img=f.read()
          img_data = BytesIO(img)
          im = Image.open(img_data)
          im = im.convert('RGB')
          imgArray = np.array(im)
          faces = face_recognition.face_locations(imgArray)
          save_face('Myface{}.jpg'.format(i),uid)
      break

  train_face()
  video_capture.release()
  cv2.destroyAllWindows()

def rec_face():
  video_capture = cv2.VideoCapture(0)
  while 1:
    # 获取一帧视频
    ret, frame = video_capture.read()
    # 窗口显示
    cv2.imshow('Video',frame)
    # 验证人脸的5照片
    if cv2.waitKey(1) & 0xFF == ord('q'):
      for i in range(1,6):
        cv2.imwrite('recface{}.jpg'.format(i), frame)
      break

  res = []
  for i in range(1, 6):
    with open('recface{}.jpg'.format(i),"rb")as f:
      img=f.read()
      img_data = BytesIO(img)
      im = Image.open(img_data)
      im = im.convert('RGB')
      imgArray = np.array(im)
      predict = predict_image(imgArray)
      if predict:
        res.extend(predict)

  b = set(res) # {2, 3}
  if len(b) == 1 and len(res) >= 3:
    print(" 验证成功")
  else:
    print(" 验证失败")

if __name__ == '__main__':
  register_face("maple")
  rec_face()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 基于python3 OpenCV3实现静态图片人脸识别

    本文采用OpenCV3和Python3 来实现静态图片的人脸识别,采用的是Haar文件级联. 首先需要将OpenCV3源代码中找到data文件夹下面的haarcascades文件夹里面包含了所有的OpenCV的人脸检测的XML文件,这些文件可以用于检测静态,视频文件,摄像头视频流中的人脸,找到haarcascades文件夹后,复制里面的XML文件,在你新建的Python脚本文件目录里面建一个名为cascades的文件夹,并把复制的XML文件粘贴到新建的文件夹中一些有人脸的的图片,这个大家可以自行

  • Python opencv实现人眼/人脸识别以及实时打码处理

    利用Python+opencv实现从摄像头捕获图像,识别其中的人眼/人脸,并打上马赛克. 系统环境:Windows 7 + Python 3.6.3 + opencv 3.4.2 一.系统.资源准备 要想达成该目标,需要满足一下几个条件: 找一台带有摄像头的电脑,一般笔记本即可: 需配有Python3,并安装NumPy包.opencv: 需要有已经训练好的分类器,用于识别视频中的人脸.人眼等,如无分类器,可以点击这里下载:haarcascades分类器 二.动手做 1.导入相关包.设置视频格式.

  • 用Python识别人脸,人种等各种信息

    最近几天了解了一下人脸识别,应用场景可以是图片标注,商品图和广告图中有没有模特,有几个模特,模特的性别,年龄,颜值,表情等数据的挖掘. 基础的识别用dlib来实现,dlib是一个机器学习的包,主要用C++写的,但是也有Python版本.其中最流行的一个功能是Facial Landmark Detection, 配备已经训练好的轮廓预测模型,叫shape_predictor_68_face_landmarks.dat, 从名字就可以看出,它可以检测出面部的68个关键点,包括五官和外轮廓等. 安装d

  • Python3利用Dlib19.7实现摄像头人脸识别的方法

    0.引言 利用python开发,借助Dlib库捕获摄像头中的人脸,提取人脸特征,通过计算欧氏距离来和预存的人脸特征进行对比,达到人脸识别的目的: 可以自动从摄像头中抠取人脸图片存储到本地,然后提取构建预设人脸特征: 根据抠取的 / 已有的同一个人多张人脸图片提取128D特征值,然后计算该人的128D特征均值: 然后和摄像头中实时获取到的人脸提取出的特征值,计算欧氏距离,判定是否为同一张人脸: 人脸识别 / face recognition的说明: wikipedia 关于人脸识别系统 / fac

  • Python基于OpenCV库Adaboost实现人脸识别功能详解

    本文实例讲述了Python基于OpenCV库Adaboost实现人脸识别功能.分享给大家供大家参考,具体如下: 以前用Matlab写神经网络的面部眼镜识别算法,研究算法逻辑,采集大量训练数据,迭代,计算各感知器的系数...相当之麻烦~而现在运用调用pythonOpenCV库Adaboost算法,无需知道算法逻辑,无需进行模型训练,人脸识别变得相当之简单了. 需要用到的库是opencv(open source computer vision),下载安装方式如下: 使用pip install num

  • Python基于Opencv来快速实现人脸识别过程详解(完整版)

    前言 随着人工智能的日益火热,计算机视觉领域发展迅速,尤其在人脸识别或物体检测方向更为广泛,今天就为大家带来最基础的人脸识别基础,从一个个函数开始走进这个奥妙的世界. 首先看一下本实验需要的数据集,为了简便我们只进行两个人的识别,选取了beyond乐队的主唱黄家驹和贝斯手黄家强,这哥俩长得有几分神似,这也是对人脸识别的一个考验: 两个文件夹,一个为训练数据集,一个为测试数据集,训练数据集中有两个文件夹0和1,之前看一些资料有说这里要遵循"slabel"命名规则,但后面处理起来比较麻烦,

  • Python人脸识别第三方库face_recognition接口说明文档

    1. 查找图像中出现的人脸 代码示例: #导入face_recognition模块 import face_recognition #将jpg文件加载到numpy数组中 image = face_recognition.load_image_file("your_file.jpg") #查找图片中人脸(上下左右)的位置,图像中可能有多个人脸 #face_locations的值类似[(135,536,198,474),()] Face_locations = face_recogniti

  • python opencv3实现人脸识别(windows)

    本文实例为大家分享了python人脸识别程序,大家可进行测试 #coding:utf-8 import cv2 import sys from PIL import Image def CatchUsbVideo(window_name, camera_idx): cv2.namedWindow(window_name) # 视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头 cap = cv2.VideoCapture(camera_idx) # 告诉OpenCV使用人脸识别分类器

  • 20行python代码实现人脸识别

    OpenCV 是最流行的计算机视觉库,原本用 C 和 C++ 开发,现在也支持 Python. 它使用机器学习算法在图像中搜索人的面部.对于人脸这么复杂的东西,并没有一个简单的检测能对是否存在人脸下结论,而需要成千上万的特征匹配.算法把人脸识别任务分解成数千个小任务,每个都不难处理.这些任务也被称为分类器. 对于类似于人脸的对象,你或许需要不少于 6000 个分类器,每一个都需要成功匹配(当然,有容错率),才能检测出人脸.但这有一个问题:对于人脸识别,算法从左上角开始计算一个个数据块,不停问"这

  • 如何通过python实现人脸识别验证

    这篇文章主要介绍了如何通过python实现人脸识别验证,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 直接上代码,此案例是根据https://github.com/caibojian/face_login修改的,识别率不怎么好,有时挡了半个脸还是成功的 # -*- coding: utf-8 -*- # __author__="maple" """ ┏┓ ┏┓ ┏┛┻━━━┛┻┓ ┃ ☃ ┃ ┃ ┳┛ ┗

  • 教你如何用Python实现人脸识别(含源代码)

    工具与图书馆 Python-3.x CV2-4.5.2 矮胖-1.20.3 人脸识别-1.3.0 若要安装上述软件包,请使用以下命令. pip install numpy opencv-python 要安装FaceRecognition,首先安装dlib包. pip install dlib 现在,使用以下命令安装面部识别模块 pip install face_recognition 下载人脸识别Python代码 请下载python面部识别项目的源代码: 人脸识别工程代码 项目数据集 我们可以使

  • 基于Python搭建人脸识别考勤系统

    目录 介绍 人脸识别的实际应用 构建人脸识别系统的步骤 安装库 导入库 加载图像 查找人脸位置并绘制边界框 为人脸识别训练图像 构建人脸识别系统 人脸识别系统面临的挑战 结论 介绍 在本文中,你将学习如何使用 Python 构建人脸识别系统.人脸识别比人脸检测更进一步.在人脸检测中,我们只检测人脸在图像中的位置,但在人脸识别中,我们制作了一个可以识别人的系统. "人脸识别是验证或识别图片或视频中的人的挑战.大型科技巨头仍在努力打造更快.更准确的人脸识别模型." 人脸识别的实际应用 人脸

  • python实现人脸识别代码

    从实时视频流中识别出人脸区域,从原理上看,其依然属于机器学习的领域之一,本质上与谷歌利用深度学习识别出猫没有什么区别.程序通过大量的人脸图片数据进行训练,利用数学算法建立建立可靠的人脸特征模型,如此即可识别出人脸.幸运的是,这些工作OpenCV已经帮我们做了,我们只需调用对应的API函数即可,先给出代码: #-*- coding: utf-8 -*- import cv2 import sys from PIL import Image def CatchUsbVideo(window_name

  • python实现人脸识别经典算法(一) 特征脸法

    近来想要做一做人脸识别相关的内容,主要是想集成一个系统,看到opencv已经集成了三种性能较好的算法,但是还是想自己动手试一下,毕竟算法都比较初级. 操作环境:python2.7 第三方库:opencv for python.numpy 第一种比较经典的算法就是特征脸法,本质上其实就是PCA降维,这种算法的基本思路是,把二维的图像先灰度化,转化为一通道的图像,之后再把它首尾相接转化为一个列向量,假设图像大小是20*20的,那么这个向量就是400维,理论上讲组织成一个向量,就可以应用任何机器学习算

  • python dlib人脸识别代码实例

    本文实例为大家分享了python dlib人脸识别的具体代码,供大家参考,具体内容如下 import matplotlib.pyplot as plt import dlib import numpy as np import glob import re #正脸检测器 detector=dlib.get_frontal_face_detector() #脸部关键形态检测器 sp=dlib.shape_predictor(r"D:\LB\JAVASCRIPT\shape_predictor_68

  • 10分钟学会使用python实现人脸识别(附源码)

    前言 今天,我们用Python实现简单的人脸识别技术! Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的.这里介绍的是准确性比较高的一种. 一.首先 梳理一下实现人脸识别需要进行的步骤: 流程大致如此,在此之前,要先让人脸被准确的找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分类器,网上种类较全,分类准确度也比较高,我们也可以节约在这方面花的时间. 既然用的是python,那自然少不了包的使用了,在

  • python opencv人脸识别考勤系统的完整源码

    如需安装运行环境或远程调试,可加QQ905733049, 或QQ2945218359由专业技术人员远程协助! 运行结果如下: 代码如下: import wx import wx.grid from time import localtime,strftime import os import io import zlib import dlib # 人脸识别的库dlib import numpy as np # 数据处理的库numpy import cv2 # 图像处理的库OpenCv impo

  • 基于Python实现人脸识别和焦点人物检测功能

    写在前面的话 基于dlib库的模型,实现人脸识别和焦点人物的检测.最后呈现的效果为焦点人物的识别框颜色与其他人物框不一样. 准备工作 需要安装好python环境,安装好dlib.opencv-python库等,具体可以看报错信息(可以使用PyCharm来运行和编辑py文件),然后把需要的库补全,文章最后会有完整代码,但是需要与shape_predictor_68_face_landmarks.dat模型文件同处一个路径下,然后启用.(百度可以下载到) 设计过程 因为是在自己电脑完成的必做题设计,

  • Python实现人脸识别

    使用到的库: dlib+Opencv python版本: 3.8 编译环境: Jupyter Notebook (Anaconda3) 0.Dlib人脸特征检测原理 提取特征点:首选抓取多张图片,从中获取特征数据集和平均特征值然后写入 csv 文件 - 计算特征数据集的欧式距离作对比:首先使用Opencv库将摄像头中的人脸框出来,再将摄像头中采取到的人脸特征值与数据集中的每个人的特征均值作对比,选取最接近(欧氏距离最小)的值,将其标注为欧氏距离最小的数据集的人名 一.构建人脸特征数据集 安装Dl

随机推荐