详解Python图像形态学处理(开运算,闭运算,梯度运算)

目录
  • 一.图像开运算
  • 二.图像闭运算
  • 三.图像梯度运算
  • 四.总结

这篇文章将继续介绍开运算、闭运算和梯度运算。数学形态学(Mathematical Morphology)是一种应用于图像处理和模式识别领域的新方法。数学形态学(也称图像代数)表示以形态为基础对图像进行分析的数学工具,其基本思想是用具有一定形态的结构元素去量度和提取图像中对应形状以达到对图像分析和识别的目的。

一.图像开运算

开运算一般能平滑图像的轮廓,削弱狭窄部分,去掉较细的突出。闭运算也是平滑图像的轮廓,与开运算相反,它一般熔合窄的缺口和细长的弯口,去掉小洞,填补轮廓上的缝隙。图像开运算是图像依次经过腐蚀、膨胀处理的过程,图像被腐蚀后将去除噪声,但同时也压缩了图像,接着对腐蚀过的图像进行膨胀处理,可以在保留原有图像的基础上去除噪声。其原理如图1所示。

设A是原始图像,B是结构元素图像,则集合A被结构元素B做开运算,记为A◦B,其定义为:

换句话说,A被B开运算就是A被B腐蚀后的结果再被B膨胀。图像开运算在OpenCV中主要使用函数morphologyEx(),它是形态学扩展的一组函数,其函数原型如下:

dst = cv2.morphologyEx(src, cv2.MORPH_OPEN, kernel)

  • src表示原始图像
  • cv2.MORPH_OPEN表示图像进行开运算处理
  • kernel表示卷积核,可以用numpy.ones()函数构建

图像开运算的代码如下所示:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np  

#读取图片
src = cv2.imread('test01.png', cv2.IMREAD_UNCHANGED)

#设置卷积核
kernel = np.ones((5,5), np.uint8)

#图像开运算
result = cv2.morphologyEx(src, cv2.MORPH_OPEN, kernel)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如图2所示,左边为原始图像,右边为处理后的图像,可以看到原始图形中的噪声点被去除了部分。

但处理后的图像中仍然有部分噪声,如果想更彻底地去除,可以将卷积设置为10×10的模板,代码如下所示:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np  

#读取图片
src = cv2.imread('test01.png', cv2.IMREAD_UNCHANGED)

#设置卷积核
kernel = np.ones((10,10), np.uint8) 

#图像开运算
result = cv2.morphologyEx(src, cv2.MORPH_OPEN, kernel)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如图3所示:

二.图像闭运算

图像闭运算是图像依次经过膨胀、腐蚀处理的过程,先膨胀后腐蚀有助于过滤前景物体内部的小孔或物体上的小黑点。其原理如图4所示:

设A是原始图像,B是结构元素图像,则集合A被结构元素B做开运算,记为A·B,其定义为:

换句话说,A被B闭运算就是A被B膨胀后的结果再被B腐蚀。图像开运算在OpenCV中主要使用函数morphologyEx(),其函数原型如下:

dst = cv2.morphologyEx(src, cv2.MORPH_CLOSE, kernel)

  • src表示原始图像
  • cv2.MORPH_CLOSE表示图像进行闭运算处理
  • kernel表示卷积核,可以用numpy.ones()函数构建

图像闭运算的代码如下所示:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np  

#读取图片
src = cv2.imread('test02.png', cv2.IMREAD_UNCHANGED)

#设置卷积核
kernel = np.ones((10,10), np.uint8)

#图像闭运算
result = cv2.morphologyEx(src, cv2.MORPH_CLOSE, kernel)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如图5所示,它有效地去除了图像中间的小黑点(噪声)。

三.图像梯度运算

图像梯度运算是图像膨胀处理减去图像腐蚀处理后的结果,从而得到图像的轮廓,其原理如图6所示,(a)表示原始图像,(b)表示膨胀处理后的图像,(c)表示腐蚀处理后的图像,(d)表示图像梯度运算的效果图。

在Python中,图像梯度运算主要调用morphologyEx()实现,其中参数cv2.MORPH_GRADIENT表示梯度处理,函数原型如下:

dst = cv2.morphologyEx(src, cv2.MORPH_GRADIENT, kernel)

  • src表示原始图像
  • cv2.MORPH_GRADIENT表示图像进行梯度运算处理
  • kernel表示卷积核,可以用numpy.ones()函数构建

图像梯度运算的实现代码如下所示。

# -*- coding: utf-8 -*-
import cv2
import numpy as np  

#读取图片
src = cv2.imread('test03.png', cv2.IMREAD_UNCHANGED)

#设置卷积核
kernel = np.ones((10,10), np.uint8)

#图像梯度运算
result = cv2.morphologyEx(src, cv2.MORPH_GRADIENT, kernel)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

图像梯度运算处理的结果如图7所示,左边为原始图像,右边为处理后的效果图。

四.总结

本文主要介绍图像形态学处理,详细讲解了图像开运算、闭运算和梯度运算。数学形态学是一种应用于图像处理和模式识别领域的新方法,其基本思想是用具有一定形态的结构元素去量度和提取图像中对应形状以达到对图像分析和识别目的。

到此这篇关于详解Python图像形态学处理(开运算,闭运算,梯度运算)的文章就介绍到这了,更多相关Python图像形态学处理内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python OpenCV学习之图像形态学

    目录 背景 一.图像二值化 二.自适应阈值 三.腐蚀 四.卷积核获取 五.膨胀 六.开运算 七.闭运算 八.形态学梯度 九.顶帽运算 十.黑帽运算 总结 背景 形态学处理方法是基于对二进制图像进行处理的,卷积核决定图像处理后的效果:形态学的处理哦本质上相当于对图像做前处理,提取出有用的特征,以便后续的目标识别等任务: 一.图像二值化 定义:将图像的每个像素变成两种值,如0和255: 全局二值化的函数原型: threshold(img,thresh,maxVal,type) img:最好是灰度图像

  • Python-openCV开运算实例

    我就废话不多说了,大家还是直接看代码吧~ #coding=utf-8 import cv2 import numpy as np img=cv2.imread('timg.jpeg',cv2.CV_LOAD_IMAGE_GRAYSCALE) #创建矩形结构单元 g=cv2.getStructuringElement(cv2.MORPH_RECT,(9,9)) #形态学处理,开运算 img_open=cv2.morphologyEx(img,cv2.MORPH_OPEN,g) img_hat=im

  • Python实例解析图像形态学运算技术

    1 图像形态学运算 在Python OpenCV图像处理之图像滤波特效详解中我们将图像滤波进行了以下分类: 邻域滤波 线性滤波 非线性滤波 频域滤波 低通滤波 高通滤波 在非线性滤波中,之前只介绍了中值滤波,事实上,还有一类非常常用的非线性滤波方法,称为图像形态学运算(Morphological operations). 图像形态学运算是一类基于图像形状运算的非线性滤波技术,其基本思想是利用一些特殊的结构元来测量或提取图像中相应的形状和特征,以便进一步进行图像分析和处理.这里结构元素就相当于我们

  • opencv 形态学变换(开运算,闭运算,梯度运算)

    形态学里把腐蚀和膨胀单独拿了出来,其他操作(保括膨胀和腐蚀的组合操作)都叫形态学变换. opencv里有包:cv2.morphologyEx() morphology :译文 形态学 使用python +opencv讲解 开运算 开运算:对图像先进行腐蚀,然后对腐蚀后的图进行膨胀 morphologyEx 运算结果=cv2.morphologyEx(源图像img,cv2.MORPH_OPEN,卷积核k) cv2.MORPH_OPEN:开运算 import cv2 import numpy as

  • 详解Python图像形态学处理(开运算,闭运算,梯度运算)

    目录 一.图像开运算 二.图像闭运算 三.图像梯度运算 四.总结 这篇文章将继续介绍开运算.闭运算和梯度运算.数学形态学(Mathematical Morphology)是一种应用于图像处理和模式识别领域的新方法.数学形态学(也称图像代数)表示以形态为基础对图像进行分析的数学工具,其基本思想是用具有一定形态的结构元素去量度和提取图像中对应形状以达到对图像分析和识别的目的. 一.图像开运算 开运算一般能平滑图像的轮廓,削弱狭窄部分,去掉较细的突出.闭运算也是平滑图像的轮廓,与开运算相反,它一般熔合

  • 详解python opencv图像混合算术运算

    目录 图片相加 cv2.add() 按位运算 图片相加 cv2.add() 要叠加两张图片,可以用 cv2.add() 函数,相加两幅图片的形状(高度 / 宽度 / 通道数)必须相同.         numpy中可以直接用res = img + img1相加,但这两者的结果并不相同(看下边代码):         add()两个图片进行加和,大于255的使用255计数.         numpy会对结果取256(相当于255+1)的模: import numpy as np import c

  • 详解Python+OpenCV进行基础的图像操作

    目录 介绍 形态变换 腐蚀 膨胀 创建边框 强度变换 对数变换 线性变换 去噪彩色图像 使用直方图分析图像 介绍 众所周知,OpenCV是一个用于计算机视觉和图像操作的免费开源库. OpenCV 是用 C++ 编写的,并且有数千种优化的算法和函数用于各种图像操作.很多现实生活中的操作都可以使用 OpenCV 来解决.例如视频和图像分析.实时计算机视觉.对象检测.镜头分析等. 许多公司.研究人员和开发人员为 OpenCV 的创建做出了贡献.使用OpenCV 很简单,而且 OpenCV 配备了许多工

  • 详解Python中图像边缘检测算法的实现

    目录 写在前面 1.一阶微分算子 1.1 Prewitt算子 1.2 Sobel算子 2.二阶微分算子 2.1 Laplace算子 2.2 LoG算子 3.Canny边缘检测 写在前面 从本节开始,计算机视觉教程进入第三章节——图像特征提取.在本章,你会见到一张简简单单的图片中蕴含着这么多你没注意到的细节特征,而这些特征将会在今后更高级的应用中发挥着极其重要的作用.本文讲解基础特征之一——图像边缘. 本文采用面向对象设计,定义了一个边缘检测类EdgeDetect,使图像边缘检测算法的应用更简洁,

  • 详解python如何通过numpy数组处理图像

    如图,以该猫咪图片为例(忽略水印).将该文件命名为cat.jpg,并对其展开以下操作. 使用PIL库进行灰度处理 from PIL import Image import numpy as np # 读取图像,并转化为数组 im = np.array(Image.open("cat.jpg")) # 灰度处理公式 gray_narry = np.array([0.299, 0.587, 0.114]) x = np.dot(im, gray_narry) # 数组转图片 gray_ca

  • 详解Python调用华为API实现图像标签

    目录 1.华为云API介绍 1.1 华为云图像标签 1.2 应用场景 1.3 调用华为云API实现图像标签 2.实验过程 2.1实验代码 2.2运行结果 2.3 问题注释 1.华为云API介绍 1.1 华为云图像标签 可识别上千种通用物体以及数百种场景标签,一个图像可包含多个标签内容,语义内容非常丰富.更智能.准确的理解图像内容,让智能相册管理.照片检索和分类.基于场景内容或者物体的广告推荐等功能更加准确. 1.2 应用场景 1.场景分析 图像标签功能可准确识别视频.图像内容,提高检索效率和精度

  • 详解Python+OpenCV实现图像二值化

    目录 一.图像二值化 1.效果 2.源码 二.图像二值化(调节阈值) 1.源码一 2.源码二 一.图像二值化 1.效果 2.源码 import cv2 import numpy as np import matplotlib.pyplot as plt # img = cv2.imread('test.jpg') #这几行是对图像进行降噪处理,但事还存在一些问题. # dst = cv2.fastNlMeansDenoisingColored(img,None,10,10,7,21) # plt

  • 详解Python如何批量检查图像是否可用

    数据集中的图像,一般不可用在以下3个方面: 1.图像过小 2.无法打开 3.“Premature end of JPEG file” 这些图像可能会导致模型的学习异常,因此,使用多进程检查数据集中的每张图像,是很有必要的. 具体逻辑如下: 遍历文件夹,多进程处理每一张图像 判断图像是否可读,是否支持resize尺寸,边长是否满足 判断JPG图像是否Premature end 删除错误图像 脚本如下: #!/usr/bin/env python # -- coding: utf-8 -- "&qu

  • 详解Python中位运算的简单实现

    目录 简介 应用场景 案例源码 简介 程序中的数在计算机内存中都是以二进制的形式存在的,位运算就是直接对整数在内存中对应的二进制位进行操作,一般是将数字化为二进制数后进行操作. 应用场景 在常规操作和位运算的操作中使用位运算,可以提升性能.但是会造成代码难以理解,建议合理利用. 1.统计奇数 2.统计偶数 3.统计不相同数等 4.求相反数 位运算分有6种: 1.按位与:两个位都为1时,结果才为1(统计奇数)即全1为1. 2.按位或:两个位都为0时,结果才为0(统计偶数)即全0为0. 3.按位异或

  • 详解python中GPU版本的opencv常用方法介绍

    引言 本篇是以python的视角介绍相关的函数还有自我使用中的一些问题,本想在这篇之前总结一下opencv编译的全过程,但遇到了太多坑,暂时不太想回看做过的笔记,所以这里主要总结python下GPU版本的opencv. 主要函数说明 threshold():二值化,但要指定设定阈值 blendLinear():两幅图片的线形混合 calcHist() createBoxFilter ():创建一个规范化的2D框过滤器 canny边缘检测 createGaussianFilter():创建一个Ga

随机推荐