Python中的二叉树查找算法模块使用指南

python中的二叉树模块内容:

BinaryTree:非平衡二叉树
 AVLTree:平衡的AVL树
 RBTree:平衡的红黑树
以上是用python写的,相面的模块是用c写的,并且可以做为Cython的包。

FastBinaryTree
 FastAVLTree
 FastRBTree
特别需要说明的是:树往往要比python内置的dict类慢一些,但是它中的所有数据都是按照某个关键词进行排序的,故在某些情况下是必须使用的。

安装和使用

安装方法

安装环境:

ubuntu12.04, python 2.7.6

安装方法

下载源码,地址:https://bitbucket.org/mozman/bintrees/src
进入源码目录,看到setup.py文件,在该目录内运行

python setup.py install

安装成功,ok!下面就看如何使用了。

应用

bintrees提供了丰富的API,涵盖了通常的多种应用。下面逐条说明其应用。

- 引用

如果按照一般模块的思路,输入下面的命令引入上述模块

>>> import bintrees

错了,这是错的,出现如下警告:(×××不可用,用×××)

  Warning: FastBinaryTree not available, using Python version BinaryTree.

  Warning: FastAVLTree not available, using Python version AVLTree.

  Warning: FastRBTree not available, using Python version RBTree.

正确的引入方式是:

  >>> from bintrees import BinaryTree   #只引入了BinartTree
  >>> from bintrees import *       #三个模块都引入了

- 实例化

看例子:

>>> btree = BinaryTree()
  >>> btree
  BinaryTree({})
  >>> type(btree)
  <class 'bintrees.bintree.BinaryTree'>

- 逐个增加键值对: .__setitem__(k,v) .复杂度O(log(n))(后续说明中,都会有复杂度标示,为了简单,直接标明:O(log(n)).)

看例子:

>>> btree.__setitem__("Tom","headmaster")
 >>> btree
 BinaryTree({'Tom': 'headmaster'})
 >>> btree.__setitem__("blog","http://blog.csdn.net/qiwsir")
 >>> btree
 BinaryTree({'Tom': 'headmaster', 'blog': 'http://blog.csdn.net/qiwsir'})

- 批量添加: .update(E)  E是dict/iterable,将E批量更新入btree. O(E*log(n))

看例子:

>>> adict = [(2,"phone"),(5,"tea"),(9,"scree"),(7,"computer")]
  >>> btree.update(adict)
  >>> btree
  BinaryTree({2: 'phone', 5: 'tea', 7: 'computer', 9: 'scree', 'Tom': 'headmaster', 'blog': 'http://blog.csdn.net/qiwsir'})

- 查找某个key是否存在: .__contains__(k)  如果含有键k,则返回True,否则返回False. O(log(n))

看例子:

>>> btree
 BinaryTree({2: 'phone', 5: 'tea', 7: 'computer', 9: 'scree', 'Tom': 'headmaster', 'blog': 'http://blog.csdn.net/qiwsir'})
 >>> btree.__contains__(5)
 True
 >>> btree.__contains__("blog")
 True
 >>> btree.__contains__("qiwsir")
 False
 >>> btree.__contains__(1)
 False

- 根据key删除某个key-value: .__delitem__(key), O(log(n))

看例子:

>>> btree
  BinaryTree({2: 'phone', 5: 'tea', 7: 'computer', 9: 'scree', 'Tom': 'headmaster', 'blog': 'http://blog.csdn.net/qiwsir'})
  >>> btree.__delitem__(5)    #删除key=5的key-value,即:5:'tea' 被删除.
  >>> btree
  BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'Tom': 'headmaster', 'blog': 'http://blog.csdn.net/qiwsir'})

- 根据key值得到该kye的value: .__getitem__(key)

看例子:

>>> btree
 BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'Tom': 'headmaster', 'blog': 'http://blog.csdn.net/qiwsir'})
 >>> btree.__getitem__("blog")
 'http://blog.csdn.net/qiwsir'
 >>> btree.__getitem__(7)
 'computer'
 >>> btree._getitem__(5)  #在btree中没有key=5,于是报错。
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 AttributeError: 'BinaryTree' object has no attribute '_getitem__'

- 迭代器: .__iter__()

看例子:

>>> btree
 BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'Tom': 'headmaster', 'blog': 'http://blog.csdn.net/qiwsir'})
 >>> aiter = btree.__iter__()
 >>> aiter
 <generator object <genexpr> at 0xb7416dec>
 >>> aiter.next() #注意:next()一个之后,该值从list中删除
 2
 >>> aiter.next()
 7
 >>> list(aiter)
 [9, 'Tom', 'blog']
 >>> list(aiter)  #结果是空
 []
 >>> bool(aiter)  #but,is True
 True

- 树的数据长度: .__len__(),返回btree的长度。O(1)

看例子:

>>> btree
  BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'Tom': 'headmaster', 'blog': 'http://blog.csdn.net/qiwsir'})
  >>> btree.__len__()
  5

- 找出key最大的k-v对: .__max__(),按照key排列,返回key最大的键值对。

- 找出key最小的键值对: .__min__()

看例子:

>>> btree
 BinaryTree({2: 'phone', 7: 'computer', 9: 'scree'})
 >>> btree.__max__()
 (9, 'scree')
 >>> btree.__min__()
 (2, 'phone')

- 两棵树的关系运算

看例子:

>>> other = [(3,'http://www.jb51.net'),(7,'qiwsir')]
 >>> bother = BinaryTree()  #再建一个树
 >>> bother.update(other) #加入数据

 >>> bother
 BinaryTree({3: 'http://www.jb51.net', 7: 'qiwsir'})
 >>> btree
 BinaryTree({2: 'phone', 7: 'computer', 9: 'scree'})

 >>> btree.__and__(bother)  #重叠部分部分
 BinaryTree({7: 'computer'})

 >>> btree.__or__(bother) #全部
 BinaryTree({2: 'phone', 3: 'http://www.jb51.net, 7: 'computer', 9: 'scree'})

 >>> btree.__sub__(bother)  #btree不与bother重叠的部分
 BinaryTree({2: 'phone', 9: 'scree'})

 >>> btree.__xor__(bother)  #两者非重叠部分
 BinaryTree({2: 'phone', 3: 'http://www.jb51.net, 9: 'scree'})

- 输出字符串模样,注意仅仅是输出的模样罢了: .__repr__()

看例子:

>>> btree
  BinaryTree({2: 'phone', 7: 'computer', 9: 'scree'})
  >>> btree.__repr__()
  "BinaryTree({2: 'phone', 7: 'computer', 9: 'scree'})"

- 清空树中的所有数据 :.clear(),O(log(n))

看例子:

>>> bother
 BinaryTree({3: 'http://blog.csdn.net/qiwsir', 7: 'qiwsir'})
 >>> bother.clear()
 >>> bother
 BinaryTree({})
 >>> bool(bother)
 False

- 浅拷贝: .copy(),官方文档上说是浅拷贝,但是我做了操作实现,是下面所示,还不是很理解其“浅”的含义。O(n*log(n))

看例子:

>>> btree
 BinaryTree({2: 'phone', 7: 'computer', 9: 'scree'})
 >>> ctree = btree.copy()
 >>> ctree
 BinaryTree({2: 'phone', 7: 'computer', 9: 'scree'})

 >>> btree.__setitem__("github","qiwsir") #增加btree的数据
 >>> btree
 BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'github': 'qiwsir'})
 >>> ctree
 BinaryTree({2: 'phone', 7: 'computer', 9: 'scree'}) #这是不是在说明属于深拷贝呢?

 >>> ctree.__delitem__(7) #删除ctree的一个数据
 >>> ctree
 BinaryTree({2: 'phone', 9: 'scree'})
 >>> btree
 BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'github': 'qiwsir'})

- 移除树中的一个数据: .discard(key),这个功能与.__delitem__(key)类似.两者都不反悔值。O(log(n))

看例子:

>>> ctree
 BinaryTree({2: 'phone', 9: 'scree'})
 >>> ctree.discard(2) #删除后,不返回值,或者返回None
 >>> ctree
 BinaryTree({9: 'scree'})
 >>> ctree.discard(2) #如果删除的key不存在,也返回None
 >>> ctree.discard(3)
 >>> ctree.__delitem__(3) #但是,.__delitem__(key)则不同,如果key不存在,会报错。
 Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/local/lib/python2.7/site-packages/bintrees/abctree.py", line 264, in __delitem__
  self.remove(key)
  File "/usr/local/lib/python2.7/site-packages/bintrees/bintree.py", line 124, in remove
  raise KeyError(str(key))
  KeyError: '3'

- 根据key查找,并返回或返回备用值: .get(key[,d])。如果key在树中存在,则返回value,否则如果有d,则返回d值。O(log(n))

看例子:

>>> btree
 BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'github': 'qiwsir'})
 >>> btree.get(2,"algorithm")
 'phone'
 >>> btree.get("python","algorithm") #没有key='python'的值,返回'algorithm'
 'algorithm'
 >>> btree.get("python") #如果不指定第二个参数,若查不到,则返回None
 >>>

- 判断树是否为空: is_empty().根据树数据的长度,如果数据长度为0,则为空。O(1)

看例子:

>>> ctree
 BinaryTree({9: 'scree'})
 >>> ctree.clear()  #清空数据
 >>> ctree
 BinaryTree({})
 >>> ctree.is_empty()
 True
 >>> btree
 BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'github': 'qiwsir'})
 >>> btree.is_empty()
 False

- 根据key、value循环从树中取值:

>>.items([reverse])--按照(key,value)结构取值;

>>.keys([reverse])--key

>>.values([reverse])--value. O(n)

>>.iter_items(s,e[,reverse]--s,e是key的范围,也就是生成在某个范围内的key的迭代器 O(n)

看例子:

>>> btree
 BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'github': 'qiwsir'})
 >>> for (k,v) in btree.items():
 ... print k,v
 ...
 2 phone
 7 computer
 9 scree
 github qiwsir
 >>> for k in btree.keys():
 ... print k
 ...
 2
 7
 9
 github
 >>> for v in btree.values():
 ... print v
 ...
 phone
 computer
 scree
 qiwsir
 >>> for (k,v) in btree.items(reverse=True): #反序
 ... print k,v
 ...
 github qiwsir
 9 scree
 7 computer
 2 phone

 >>> btree
 BinaryTree({2: 'phone', 5: None, 7: 'computer', 8: 'eight', 9: 'scree', 'github': 'qiwsir'})
 >>> for (k,v) in btree.iter_items(6,9): #要求迭代6<=key<9的键值对数据
 ... print k,v
 ...
 7 computer
 8 eight
 >>>

- 删除数据并返回该值:

>>.pop(key[,d]), 根据key删除树的数据,并返回该value,但是如果没有,并也指定了备选返回的d,则返回d,如果没有d,则报错;

>>.pop_item(),在树中随机选择(key,value)删除,并返回。

看例子:

>>> ctree = btree.copy()
 >>> ctree
 BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'github': 'qiwsir'})

 >>> ctree.pop(2) #删除key=2的数据,返回其value
 'phone'
 >>> ctree.pop(2) #删除一个不存在的key,报错
 Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/local/lib/python2.7/site-packages/bintrees/abctree.py", line 350, in pop
  value = self.get_value(key)
  File "/usr/local/lib/python2.7/site-packages/bintrees/abctree.py", line 557, in get_value
  raise KeyError(str(key))
  KeyError: '2'

 >>> ctree.pop_item()  #随机返回一个(key,value),并已删除之
 (7, 'computer')
 >>> ctree
 BinaryTree({9: 'scree', 'github': 'qiwsir'})

 >>> ctree.pop(7,"sing") #如果没有,可以返回指定值
 'sing'

- 查找数据,并返回value: .set_default(key[,d]),在树的数据中查找key,如果存在,则返回该value。如果不存在,当指定了d,则将该(key,d)添加到树内;当不指定d的时候,添加(key,None). O(log(n))

看例子:

>>> btree
 BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'github': 'qiwsir'})
 >>> btree.set_default(7) #存在则返回
 'computer'

 >>> btree.set_default(8,"eight") #不存在,则返回后备指定值,并加入到树
 'eight'
 >>> btree
 BinaryTree({2: 'phone', 7: 'computer', 8: 'eight', 9: 'scree', 'github': 'qiwsir'})

 >>> btree.set_default(5) #如果不指定值,则会加入None
 >>> btree
 BinaryTree({2: 'phone', 5: None, 7: 'computer', 8: 'eight', 9: 'scree', 'github': 'qiwsir'})

 >>> btree.get(2) #注意,.get(key)与.set_default(key[,d])的区别
 'phone'
 >>> btree.get(3,"mobile")  #不存在的 key,返回但不增加到树
 'mobile'
 >>> btree
 BinaryTree({2: 'phone', 7: 'computer', 8: 'eight', 9: 'scree', 'github': 'qiwsir'})

- 根据key删除值

>>.remove(key),删除(key,value)

>>.remove_items(keys),keys是一个key组成的list,逐个删除树中的对应数据

看例子:

>>> ctree
 BinaryTree({2: 'phone', 5: None, 7: 'computer', 8: 'eight', 9: 'scree', 'github': 'qiwsir'})
 >>> ctree.remove_items([5,6])  #key=6,不存在,报错
 Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/local/lib/python2.7/site-packages/bintrees/abctree.py", line 271, in remove_items
  self.remove(key)
  File "/usr/local/lib/python2.7/site-packages/bintrees/bintree.py", line 124, in remove
  raise KeyError(str(key))
  KeyError: '6'

 >>> ctree
 BinaryTree({2: 'phone', 7: 'computer', 8: 'eight', 9: 'scree', 'github': 'qiwsir'})
 >>> ctree.remove_items([2,7,'github']) #按照 列表中顺序逐个删除
 >>> ctree
 BinaryTree({8: 'eight', 9: 'scree'})

##以上只是入门的基本方法啦,还有更多内容,请移不到到文章开头的官方网站

(0)

相关推荐

  • python数据结构之二叉树的遍历实例

    遍历方案   从二叉树的递归定义可知,一棵非空的二叉树由根结点及左.右子树这三个基本部分组成.因此,在任一给定结点上,可以按某种次序执行三个操作:   1).访问结点本身(N)   2).遍历该结点的左子树(L)   3).遍历该结点的右子树(R) 有次序:   NLR.LNR.LRN 遍历的命名 根据访问结点操作发生位置命名:NLR:前序遍历(PreorderTraversal亦称(先序遍历))  --访问结点的操作发生在遍历其左右子树之前.LNR:中序遍历(InorderTraversal)

  • Python算法之求n个节点不同二叉树个数

    问题 创建一个二叉树 二叉树有限多个节点的集合,这个集合可能是: 空集 由一个根节点,和两棵互不相交的,分别称作左子树和右子树的二叉树组成 创建二叉树: 创建节点 再创建节点之间的关系 Python代码示例 # !/usr/bin/env python # -*-encoding: utf-8-*- # author:LiYanwei # version:0.1 class TreeNode(object): def __init__ (self, data, left = None, righ

  • python数据结构之二叉树的建立实例

    先建立二叉树节点,有一个data数据域,left,right 两个指针域 复制代码 代码如下: # -*- coding: utf - 8 - *- class TreeNode(object): def __init__(self, left=0, right=0, data=0):        self.left = left        self.right = right        self.data = data 复制代码 代码如下: class BTree(object):

  • Python利用前序和中序遍历结果重建二叉树的方法

    本文实例讲述了Python利用前序和中序遍历结果重建二叉树的方法.分享给大家供大家参考,具体如下: 题目:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字. 这道题比较容易,前序遍历的结果中,第一个结点一定是根结点,然后在中序遍历的结果中查找这个根结点,根结点左边的就是左子树,根结点右边的就是右子树,递归构造出左.右子树即可.示意图如图所示: 利用前序和中序遍历的结果重建二叉树 Python代码: # coding: utf-8 ''

  • python数据结构之二叉树的统计与转换实例

    一.获取二叉树的深度 就是二叉树最后的层次,如下图: 实现代码: 复制代码 代码如下: def getheight(self):        ''' 获取二叉树深度 '''        return self.__get_tree_height(self.root) def __get_tree_height(self, root):        if root is 0:            return 0        if root.left is 0 and root.righ

  • Python中的二叉树查找算法模块使用指南

    python中的二叉树模块内容: BinaryTree:非平衡二叉树  AVLTree:平衡的AVL树  RBTree:平衡的红黑树 以上是用python写的,相面的模块是用c写的,并且可以做为Cython的包. FastBinaryTree  FastAVLTree  FastRBTree 特别需要说明的是:树往往要比python内置的dict类慢一些,但是它中的所有数据都是按照某个关键词进行排序的,故在某些情况下是必须使用的. 安装和使用 安装方法 安装环境: ubuntu12.04, py

  • Python 语言实现六大查找算法

    目录 一.顺序查找算法 二.折半查找算法 三.插补查找算法 四.哈希查找算法 五.分块查找算法 六.斐波那契查找算法 七.六种查找算法的时间复杂度 一.顺序查找算法 顺序查找又称为线性查找,是最简单的查找算法.这种算法就是按照数据的顺序一项一项逐个查找,所以不管数据顺序如何,都得从头到尾地遍历一次.顺序查找的优点就是数据在查找前,不需要对其进行任何处理(包括排序).缺点是查找速度慢,如果数据列的第一个数据就是想要查找的数据,则该算法查找速度为最快,只需查找一次即可:如果查找的数据是数据列的最后一

  • python中实现k-means聚类算法详解

    算法优缺点: 优点:容易实现 缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢 使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去. 1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好.另一种则是根据具体的需求确定,比如说进行衬衫尺寸的聚

  • Python中非常实用的Math模块函数教程详解

    目录 math模块常数 1. 圆周率 2. Tau (τ) 3. 欧拉数 4. 无限 5. 不是数字 算术函数 1. factorial() 2. ceil() 3. floor() 4. trunc() 5. isclose() 幂函数 1. exp() 2. 对数函数 其他重要的math模块功能 由于该math模块与 Python 版本一起打包,因此您不必单独安装它,直接导入: import math math模块常数 Pythonmath模块提供了多种预定义常量.访问这些常量提供了几个优点

  • 在python中使用正则表达式查找可嵌套字符串组

    在网上看到一个小需求,需要用正则表达式来处理.原需求如下: 找出文本中包含"因为--所以"的句子,并以两个词为中心对齐输出前后3个字,中间全输出,如果"因为"和"所以"中间还存在"因为""所以",也要找出来,另算一行,输出格式为: 行号 前面3个字 *因为* 全部 &所以& 后面3个字(标点符号算一个字) 2 还不是 *因为* 这里好, &所以& 没有人 实现方法如下: #e

  • python中PS 图像调整算法原理之亮度调整

    亮度调整 非线性亮度调整: 对于R,G,B三个通道,每个通道增加相同的增量. 线性亮度调整: 利用HSL颜色空间,通过只对其L(亮度)部分调整,可达到图像亮度的线性调整.但是,RGB和HSL颜色空间的转换很繁琐,一般还需要浮点数的运算,不仅增加了代码的复杂度,更重要的是要逐点将RGB转换为HSL,然后确定新的L值,再将HSL转换为RGB,运行速度可想而知是很慢的.要想提高图像亮度线性调整的速度,应该从三方面考虑,一是变浮点运算为整数运算,二是只提取HSL的L部分进行调整,三是采用汇编代码,在De

  • Python中IP地址处理IPy模块的方法

    安装 先下载源码,地址:ps://pypi.python.org/pypi/IPy/">https://pypi.python.org/pypi/IPy/ ,然后解压后使用命令python setup.py install安装. 使用 1.显示IP类型 >>> IP('192.168.1.1').version() 4 >>> IP('::1').version() 6 类似如上所示,通过version方法可以的判断输入的IP是IPv4还是IPv6 .

  • python 中文件输入输出及os模块对文件系统的操作方法

    整理了一下python 中文件的输入输出及主要介绍一些os模块中对文件系统的操作. 文件输入输出 1.内建函数open(file_name,文件打开模式,通用换行符支持),打开文件返回文件对象. 2.对打开文件进行读取时,readline()与readlines()的区别在于是否一次性的读取所有的内容,并将每行的信息作为列表中的一个子项. 例如:文件test.txt中 1,3,4   2,35,6 分别用readline与readlines对其进行读取 r=file_object.readlin

  • Python中BeautifulSoup通过查找Id获取元素信息

    比如如下的html 他是在span标签下的class为name,id为is-like-span 这样就可以通过这样的代码进行方法: isCliked = soup.find('span', id = 'is-like-span' 通过这种方式去获取即可,如果里面的为字符串则调用get_text()即可 到此这篇关于Python中BeautifulSoup通过查找Id获取元素信息的文章就介绍到这了,更多相关BeautifulSoup Id获取元素信息内容请搜索我们以前的文章或继续浏览下面的相关文章

  • 如何在Python中创建二叉树

    前言 本文的内容是数据结构中二叉树部分最基础的,之所以写一下主要是为了方便刷题的时候,能够在自己电脑上很快的使用这种小的demo进行复杂的练习. 二叉树节点定义 二叉树的节点定义如下: class TreeNode():#二叉树节点 def __init__(self,val,lchild=None,rchild=None): self.val=val #二叉树的节点值 self.lchild=lchild #左孩子 self.rchild=rchild #右孩子 递归构建二叉树 本文使用的前序

随机推荐