二叉搜索树源码分享

代码如下:

#include <iostream>
using namespace std;

//枚举类,前中后三种遍历方式
enum ORDER_MODE
{
 ORDER_MODE_PREV = 0,
 ORDER_MODE_MID,
 ORDER_MODE_POST
};

//树节点的结构体
template <class T>
struct BinaryNode
{
 T    element;
 BinaryNode  *left;
 BinaryNode  *right;

BinaryNode(const T& theElement,
  BinaryNode *lt,
  BinaryNode *rt):
 element(theElement),
  left(lt),
  right(rt)
 {

}
};

template <class T>
class BinarySearchTree
{
private:

BinaryNode<T>   *m_root;

public:
 BinarySearchTree();
 BinarySearchTree(const BinarySearchTree& rhs);
 ~BinarySearchTree();

const T& findMin() const;
 const T& findMax() const;
 bool contains(const T& x) const;
 void printTree(ORDER_MODE eOrderMode = ORDER_MODE_PREV) const;

void makeEmpty();
 void insert(const T& x);
 void remove(const T& x);

private:
 void insert(const T& x, BinaryNode<T>* &t) ;
 void remove(const T& x, BinaryNode<T>* &t) ;
 BinaryNode<T>* findMin( BinaryNode<T>* t) const;
 BinaryNode<T>* findMax( BinaryNode<T>* t) const;
 bool contains(const T& x, const BinaryNode<T>* t) const;
 void makeEmpty(BinaryNode<T>* &t);
 void printTreeInPrev(BinaryNode<T>* t) const;
 void printTreeInMid(BinaryNode<T>* t)const;
 void printTreeInPost(BinaryNode<T>* t)const;
};

//构造方法
template <class T>
BinarySearchTree<T>::BinarySearchTree()
{
 m_root = NULL;
}

//使用另一棵二叉搜索树的构造函数
template <class T>
BinarySearchTree<T>:: BinarySearchTree(const BinarySearchTree& rhs)
{
 m_root = rhs.m_root;
}

//析构函数,释放内存
template <class T>
BinarySearchTree<T>:: ~BinarySearchTree()
{
 makeEmpty();
}

// 判断x元素是否存在
template <class T>
bool  BinarySearchTree<T>::contains(const T& x) const
{
 return contains(x, m_root);
}

//递归调用
template <class T>
bool BinarySearchTree<T>::contains(const T& x, const BinaryNode<T>* t) const
{
 if (!t)
  return false;
 else if (x < t->element)
  return contains(x, t->left);
 else if (x > t->element)
  return contains(x, t->right);
 else
  return true;
}

// 寻找树中的最小值
template <class T>
const T& BinarySearchTree<T>::findMin() const
{
 return findMin(m_root)->element;
}

//递归搜索树中最小值
template <class T>
BinaryNode<T>* BinarySearchTree<T>::findMin( BinaryNode<T>* t) const
{
 //二叉树的一个特点就是左子叶的值比根节点小, 右子叶的比根节点的大
 if (!t)
  return NULL;
 if (t->left == NULL)
  return t;
 else
  return findMin(t->left);
}

// 寻找树中最大值
template <class T>
const T& BinarySearchTree<T>::findMax() const
{
 return findMax(m_root)->element;
}

//递归寻找树中最大值
template <class T>
BinaryNode<T>* BinarySearchTree<T>::findMax( BinaryNode<T>* t) const
{
 //二叉树的一个特点就是左子叶的值比根节点小, 右子叶的比根节点的大
 if (t != NULL)
  while (t->right != NULL)
   t = t->right;
 return t;
}

// 插入元素
template <class T>
void BinarySearchTree<T>:: insert(const T& x)
{
 insert(x, m_root);
}

//递归插入
template <class T>
void BinarySearchTree<T>::insert(const T& x, BinaryNode<T>* &t)
{
 if (t == NULL)
  t = new BinaryNode<T>(x, NULL, NULL);//注意这个指针参数是引用
 else if (x < t->element)
  insert(x, t->left);
 else if (x > t->element)
  insert(x, t->right);
 else
  ;//do nothing
}

//移除元素
template <class T>
void BinarySearchTree<T>::remove(const T& x)
{
 return remove(x, m_root);
}

//递归移除
template <class T>
void BinarySearchTree<T>::remove(const T& x, BinaryNode<T>* &t)
{
 if (t == NULL)
  return;
 if (x < t->element)
  remove(x, t->left);
 else if (x > t->element)
  remove (x, t->right);
 else // now ==
 {
  if (t->left != NULL &&
   t->right != NULL)//two child
  {
   t->element = findMin(t->right)->element;
   remove(t->element, t->right);
  }
  else
  {
   BinaryNode<T> *oldNode = t;
   t = (t->left != NULL) ? t->left : t->right;
   delete oldNode;
  }
 }
}

//清空二叉树
template <class T>
void  BinarySearchTree<T>::makeEmpty()
{
 makeEmpty(m_root);
}

//递归清空
template <class T>
void  BinarySearchTree<T>::makeEmpty(BinaryNode<T>* &t)
{
 if (t)
 {
  makeEmpty(t->left);
  makeEmpty(t->right);
  delete t;
 }
 t = NULL;
}

// 打印二叉搜索树
template <class T>
void BinarySearchTree<T>::printTree(ORDER_MODE eOrderMode /*= ORDER_MODE_PREV*/) const
{
 if (ORDER_MODE_PREV == eOrderMode)
  printTreeInPrev(m_root);
 else if (ORDER_MODE_MID == eOrderMode)
  printTreeInMid(m_root);
 else if (ORDER_MODE_POST == eOrderMode)
  printTreeInPost(m_root);
 else
  ;//do nothing
}

//前序打印
template <class T>
void BinarySearchTree<T>::printTreeInPrev(BinaryNode<T>* t) const
{
 if (t)
 {
  cout << t->element;
  printTreeInPrev(t->left);
  printTreeInPrev(t->right);
 }
}

//中序打印
template <class T>
void BinarySearchTree<T>::printTreeInMid(BinaryNode<T>* t) const
{
 if (t)
 {
  printTreeInPrev(t->left);
  cout << t->element;
  printTreeInPrev(t->right);
 }
}

//后序打印
template <class T>
void BinarySearchTree<T>::printTreeInPost(BinaryNode<T>* t) const
{
 if (t)
 {
  printTreeInPost(t->left);
  printTreeInPost(t->right);
  cout << t->element;
 }
}
```

测试代码
===
```C++
#include "BinarySearchTree.h"

int main()
{
 BinarySearchTree<int> binaryTree;
 binaryTree.insert(5);
 binaryTree.insert(1);
 binaryTree.insert(2);
 binaryTree.insert(3);
 binaryTree.insert(6);
 binaryTree.insert(8);
 //测试前中后序打印
 cout <<endl<<"前序:"<<endl;
 binaryTree.printTree(ORDER_MODE_PREV);
 cout <<endl<<"中序:"<<endl;
 binaryTree.printTree(ORDER_MODE_MID);
 cout <<endl<<"后序:"<<endl;
 binaryTree.printTree(ORDER_MODE_POST);
 cout <<endl;

//测试基本操作
 bool b = binaryTree.contains(1);
 cout<< "是否存在1:"<<b<<endl;
 int x = binaryTree.findMin();
 cout << "最小值为:"<< x <<endl;
 x = binaryTree.findMax();
 cout << "最大值为:"<< x <<endl;
 binaryTree.remove(2);

cout << "移除元素2之后"<<endl;

//测试前中后序打印
 cout <<endl<<"前序:"<<endl;
 binaryTree.printTree(ORDER_MODE_PREV);
 cout <<endl<<"中序:"<<endl;
 binaryTree.printTree(ORDER_MODE_MID);
 cout <<endl<<"后序:"<<endl;
 binaryTree.printTree(ORDER_MODE_POST);
 cout <<endl;

return 0;
}

(0)

相关推荐

  • Java 实现二叉搜索树的查找、插入、删除、遍历

    由于最近想要阅读下JDK1.8 中HashMap的具体实现,但是由于HashMap的实现中用到了红黑树,所以我觉得有必要先复习下红黑树的相关知识,所以写下这篇随笔备忘,有不对的地方请指出- 学习红黑树,我觉得有必要从二叉搜索树开始学起,本篇随笔就主要介绍Java实现二叉搜索树的查找.插入.删除.遍历等内容. 二叉搜索树需满足以下四个条件: 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值: 任意节点的左.右子

  • 二叉搜索树的插入与删除(详细解析)

    题目:创建一个类,类中的数据成员时一棵二叉搜索树,对外提供的接口有添加结点和删除结点这两种方法.用户不关注二叉树的情况.要求我们给出这个类的结构以及实现类中的方法. 思路添加结点:添加结点其实很容易,我们只需要找到结点所行对应的位置就可以了,而且没有要求是平衡的二叉搜索树,因此每次添加结点都是在叶子结点上操作,不需要修改二叉搜索树整体的结构.要找出添加节点在二叉搜索树中的位置,可以用一个循环解决.判断插入结点与当前头结点的大小,如果大于头结点则继续搜索右子树,如果小于头结点则继续搜索左子树.直到

  • C#创建二叉搜索树的方法

    本文实例讲述了C#创建二叉搜索树的方法.分享给大家供大家参考.具体如下: public static BinaryTreeNode BuildBinarySearchTree(int[] sortedArray) { if (sortedArray.Length == 0) return null; int _mid = sortedArray.Length / 2; BinaryTreeNode _root = new BinaryTreeNode(sortedArray[_mid]); in

  • Python二叉搜索树与双向链表转换实现方法

    本文实例讲述了Python二叉搜索树与双向链表实现方法.分享给大家供大家参考,具体如下: # encoding=utf8 ''' 题目:输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表. 要求不能创建任何新的结点,只能调整树中结点指针的指向. ''' class BinaryTreeNode(): def __init__(self, value, left = None, right = None): self.value = value self.left = left self.

  • Python实现二叉搜索树

    二叉搜索树 我们已经知道了在一个集合中获取键值对的两种不同的方法.回忆一下这些集合是如何实现ADT(抽象数据类型)MAP的.我们讨论两种ADT MAP的实现方式,基于列表的二分查找和哈希表.在这一节中,我们将要学习二叉搜索树,这是另一种键指向值的Map集合,在这种情况下我们不用考虑元素在树中的实际位置,但要知道使用二叉树来搜索更有效率. 搜索树操作 在我们研究这种实现方式之前,让我们回顾一下ADT MAP提供的接口.我们会注意到,这种接口和Python的字典非常相似. Map() 创建了一个新的

  • C#二叉搜索树插入算法实例分析

    本文实例讲述了C#二叉搜索树插入算法.分享给大家供大家参考.具体实现方法如下: public class BinaryTreeNode { public BinaryTreeNode Left { get; set; } public BinaryTreeNode Right { get; set; } public int Data { get; set; } public BinaryTreeNode(int data) { this.Data = data; } } public void

  • 二叉搜索树实例练习

    一棵二叉查找树是按二叉树结构来组织的.这样的树可以用链表结构表示,其中每一个结点都是一个对象.结点中除了数据外,还包括域left,right和p,它们分别指向结点的左儿子.右儿子,如果结点不存在,则为NULL. 它或者是一棵空树:或者是具有下列性质的二叉树: 1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值: (2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值: (3)左.右子树也分别为二叉查找树: 显然满足了上面的性质,那么二叉查找树按中序遍历就是按从小到大的顺序遍历,

  • javascript数据结构之二叉搜索树实现方法

    本文实例讲述了javascript二叉搜索树实现方法.分享给大家供大家参考,具体如下: 二叉搜索树:顾名思义,树上每个节点最多只有二根分叉:而且左分叉节点的值 < 右分叉节点的值 . 特点:插入节点.找最大/最小节点.节点值排序 非常方便 二叉搜索树-javascript实现 <script type="text/javascript"> // <![CDATA[ //打印输出 function println(msg) { document.write(msg

  • 二叉搜索树源码分享

    复制代码 代码如下: #include <iostream>using namespace std; //枚举类,前中后三种遍历方式enum ORDER_MODE{ ORDER_MODE_PREV = 0, ORDER_MODE_MID, ORDER_MODE_POST}; //树节点的结构体template <class T>struct BinaryNode{ T    element; BinaryNode  *left; BinaryNode  *right; Binary

  • Java底层基于二叉搜索树实现集合和映射/集合Set功能详解

    本文实例讲述了Java底层基于二叉搜索树实现集合和映射功能.分享给大家供大家参考,具体如下: 前言:在第5章的系列学习中,已经实现了关于二叉搜索树的相关操作,详情查看第5章即可.在本节中着重学习使用底层是我们已经封装好的二叉搜索树相关操作来实现一个基本的集合(set)这种数据结构. 集合set的特性: 集合Set存储的元素是无序的.不可重复的.为了能达到这种特性就需要寻找可以作为支撑的底层数据结构. 这里选用之前自己实现的二叉搜索树,这是由于该二叉树是不能盛放重复元素的.因此我们可以使用二叉搜索

  • Java删除二叉搜索树的任意元素的方法详解

    本文实例讲述了Java删除二叉搜索树的任意元素的方法.分享给大家供大家参考,具体如下: 一.删除思路分析 在删除二叉搜索树的任意元素时,会有三种情况: 1.1 删除只有左孩子的节点 节点删除之后,将左孩子所在的二叉树取代其位置:连在原来节点父亲元素右节点的位置,比如在图中需要删除58这个节点. 删除58这个节点后,如下图所示: 1.2 删除只有右孩子的节点: 节点删除之后,将右孩子所在的二叉树取代其位置:连在原来节点的位置,比如在下图中需要删除58这个节点. 删除58这个节点后,如下图所示: 这

  • Java删除二叉搜索树最大元素和最小元素的方法详解

    本文实例讲述了Java删除二叉搜索树最大元素和最小元素的方法.分享给大家供大家参考,具体如下: 在前面一篇<Java二叉搜索树遍历操作>中完成了树的遍历,这一节中将对如何从二叉搜索树中删除最大元素和最小元素做介绍: 我们要想删除二分搜索树的最小值和最大值,就需要先找到二分搜索树的最小值和最大值,其实也还是很容易的,因为根据二叉搜索树的特点,它的左子树一定比当前节点要小,所以二叉搜索树的最小值一定是左子树一直往下走,一直走到底.同样在二叉搜索树中,右子树节点值,一定比当前节点要大,所以右子树一直

  • Java编程删除链表中重复的节点问题解决思路及源码分享

    一. 题目 在一个排序的链表中,存在重复的结点,请删除该链表中重复的结点,重复的结点不保留,返回链表头指针. 二. 例子 输入链表:1->2->3->3->4->4->5 处理后为:1->2->5 三. 思路 个人感觉这题关键是注意指针的指向,可以定义一个first对象(值为-1,主要用于返回操作后的链表),first.next指向head,定义一个last同样指向first(主要用于操作记录要删除节点的前一个节点),定义一个p指向head,指向当前节点.

  • PHP实现绘制二叉树图形显示功能详解【包括二叉搜索树、平衡树及红黑树】

    本文实例讲述了PHP实现绘制二叉树图形显示功能.分享给大家供大家参考,具体如下: 前言: 最近老师布置了一个作业:理解并实现平衡二叉树和红黑树,本来老师是说用C#写的,但是我学的C#基本都还给老师了,怎么办?那就用现在最熟悉的语言PHP来写吧! 有一个问题来了,书上在讲解树的时候基本上会给出形象的树形图.但是当我们自己试着实现某种树,在调试.输出的时候确只能以字符的形式顺序地输出.这给调试等方面带来了很大的不便.然后在各种百度之后,我发现利用PHP实现二叉树的图形显示的资源几乎是零!好吧,那我就

随机推荐