Python装饰器(decorator)定义与用法详解

本文实例讲述了Python装饰器(decorator)定义与用法。分享给大家供大家参考,具体如下:

什么是装饰器(decorator)

简单来说,可以把装饰器理解为一个包装函数的函数,它一般将传入的函数或者是类做一定的处理,返回修改之后的对象.所以,我们能够在不修改原函数的基础上,在执行原函数前后执行别的代码.比较常用的场景有日志插入,事务处理等.

装饰器

最简单的函数,返回两个数的和

def calc_add(a, b):
 return a + b
calc_add(1, 2)

但是现在又有新的需求,计算求和操作耗时,很简单,求和前获取一下时间,求和后再获取一次,求差即可

import datetime
def calc_add(a, b):
 start_time = datetime.datetime.now()
 result = a + b
 end_tiem = datetime.datetime.now()
 print "result:", result, "used:", (end_tiem - start_time).microseconds, "μs"
 return result
calc_add(1, 2)

现在呢,函数calc_diff(a, b),计算a-b,也想计算减法操作的时间差,很好办,把那段代码复制过去.但是假如我们现在想编的是一个数学函数库,各种函数都想计算其执行耗时,总不能一个一个复制代码,想个更好的办法.

我们知道,在Python中函数也是被视为对象的,可以作为参数传递,那么假如把计算耗时的独立为一个单独的函数calc_spend_time(),然后把需要计算耗时的函数例如calc_add的引用传递给它,在calc_spend_time中调用calc_add,这样所有的需要计算耗时的函数都不用修改自己的代码了.

def calc_spend_time(func, *args, **kargs):
 start_time = datetime.datetime.now()
 result = func(*args, **kargs)
 end_tiem = datetime.datetime.now()
 print "result:", result, "used:", (end_tiem - start_time).microseconds, "μs"
def calc_add(a, b):
 return a + b
calc_spend_time(calc_add, 1, 1)
# calc_spend_time(calc_add, a=1, b=2)

看起来也不错,负责计算的函数不用更改,只需调用的时候作为参数传给计算时间差的函数.但就是这,调用的时候形式变了,不再是clac(1, 2),而是calc_spend_time(clac_add, 1, 2),万一calc_add大规模被调用,那么还得一处一处找,然后修改过来,还是很麻烦.如果想不修改代码,就得使clac()calc_spend_time(clac)效果一样,那么可以在calc_spend_time()里把传入的clac包装一下,然后返回包装后的新的函数,再把返回的包装好的函数赋给clac,那么calc()的效果就和上例calc_spend_time(calc())效果一样.

import datetime
def calc_spend_time(func):
 def new_func(a, b):
  start_time = datetime.datetime.now()
  result = func(a, b)
  end_tiem = datetime.datetime.now()
  print "result:", result, "used:", (end_tiem - start_time).microseconds, "μs"
 return new_func
def calc_add(a, b):
 return a + b
calc_add = calc_spend_time(calc_add)
calc_add(1, 2)

语法糖

上面的例子就是装饰器的概念,包装函数的函数.事实上上面的例子还可以更精简

import datetime
def calc_spend_time(func):
 def new_func(a, b):
  start_time = datetime.datetime.now()
  result = func(a, b)
  end_tiem = datetime.datetime.now()
  print "result:", result, "used:", (end_tiem - start_time).microseconds, "μs"
 return new_func
@calc_spend_time
def calc_add(a, b):
 return a + b
calc_add(1, 2)

@calc_spend_time就是语法糖,它的本质就是:calc_add = calc_spend_time(calc_add)

无参数的函数装饰器

import datetime
def calc_spend_time(func):
 def new_func(*args, **kargs):
  start_time = datetime.datetime.now()
  result = func(*args, **kargs)
  end_tiem = datetime.datetime.now()
  print "result:", result, "used:", (end_tiem - start_time).microseconds, "μs"
 return new_func
@calc_spend_time
def calc_add(a, b):
 return a + b
@calc_spend_time
def calc_diff(a, b):
 return a - b
calc_add(a=1, b=2)
calc_diff(1, 2)

注:

*args:把所有的参数按出现顺序打包成list
**kargs:把所有的key=value形式的参数打包成一个dict

带参数的函数装饰器

假如我们需要知道函数的一些额外信息,例如函数作者,可以通过给装饰器函数增加参数来实现.

import datetime
def calc_spend_time(author):
 def first_deco(func):
  def new_func(*args, **kargs):
   start_time = datetime.datetime.now()
   result = func(*args, **kargs)
   end_tiem = datetime.datetime.now()
   print author, "result:", result, "used:", (end_tiem - start_time).microseconds, "μs"
  return new_func
 return first_deco
@calc_spend_time('author_1')
def calc_add(a, b):
 return a + b
@calc_spend_time('author_2')
def calc_diff(a, b):
 return a - b
calc_add(a=1, b=2)
calc_diff(1, 2)

Python内置装饰器

Python内置的装饰器有三个:staticmethodclassmethodproperty

staticmethod:把类中的方法定义为静态方法,使用staticmethod装饰的方法可以使用类或者类的实例对象来调用,不需要传入self

class Human(object):
 """docstring for Human"""
 def __init__(self):
  super(Human, self).__init__()
 @staticmethod
 def say(message):
  if not message:
   message = 'hello'
  print 'I say %s' % message
 def speak(self, message):
  self.say(message)
Human.say(None)
human = Human()
human.speak('hi')

输出:

I say hello
I say hi

classmethod:把类中的方法定义为类方法,使用classmethod装饰的方法可以使用类或者类的实例对象来调用,并将该class对象隐式的作为第一个参数传入

class Human(object):
 """docstring for Human"""
 def __init__(self):
  super(Human, self).__init__()
  self.message = '111'
 def say(message):
  if not message:
   message = 'hello'
  print 'I say %s' % message
 @classmethod
 def speak(cls, message):
  if not message:
   message = 'hello'
  cls.say(message)
human = Human()
human.speak('hi')

输出同上例

property:把方法变成属性

class Human(object):
 """docstring for Human"""
 def __init__(self, value):
  super(Human, self).__init__()
  self._age = value
 @property
 def age(self):
  return self._age
human = Human(20)
print human.age

更多关于Python相关内容可查看本站专题:《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

您可能感兴趣的文章:

  • Python合并多个装饰器小技巧
  • Python中的多重装饰器
  • Python装饰器用法实例总结
  • Python中的各种装饰器详解
  • Python中的装饰器用法详解
  • Python装饰器的函数式编程详解
  • 深入理解python中的闭包和装饰器
  • 巧用Python装饰器 免去调用父类构造函数的麻烦
  • python 装饰器功能以及函数参数使用介绍
  • Python多层装饰器用法实例分析
(0)

相关推荐

  • Python中的各种装饰器详解

    Python装饰器,分两部分,一是装饰器本身的定义,一是被装饰器对象的定义. 一.函数式装饰器:装饰器本身是一个函数. 1.装饰函数:被装饰对象是一个函数 [1]装饰器无参数: a.被装饰对象无参数: 复制代码 代码如下: >>> def test(func):     def _test():         print 'Call the function %s().'%func.func_name         return func()     return _test >

  • 深入理解python中的闭包和装饰器

    python中的闭包从表现形式上定义(解释)为:如果在一个内部函数里,对在外部作用域(但不是在全局作用域)的变量进行引用,那么内部函数就被认为是闭包(closure). 以下说明主要针对 python2.7,其他版本可能存在差异. 也许直接看定义并不太能明白,下面我们先来看一下什么叫做内部函数: def wai_hanshu(canshu_1): def nei_hanshu(canshu_2): # 我在函数内部有定义了一个函数 return canshu_1*canshu_2 return

  • python 装饰器功能以及函数参数使用介绍

    简单的说:装饰器主要作用就是对函数进行一些修饰,它的出现是在引入类方法和静态方法的时候为了定义静态方法出现的.例如为了把foo()函数声明成一个静态函数 复制代码 代码如下: class Myclass(object): def staticfoo(): ............ ............ staticfoo = staticmethod(staticfoo) 可以用装饰器的方法实现: 复制代码 代码如下: class Myclass(object): @staticmethod

  • Python中的多重装饰器

    多重装饰器,即多个装饰器修饰同一个对象[实际上并非完全如此,且看下文详解] 1.装饰器无参数: 复制代码 代码如下: >>> def first(func):     print '%s() was post to first()'%func.func_name     def _first(*args,**kw):         print 'Call the function %s() in _first().'%func.func_name         return func

  • 巧用Python装饰器 免去调用父类构造函数的麻烦

    先看一段代码: 复制代码 代码如下: class T1(threading.Thread): def __init__(self, a, b, c): super(T1, self).__init__() self.a = a self.b = b self.c = c def run(self): print self.a, self.b, self.c 代码定义了一个继承自threading.Thread的class,看这句 super(T1, self).__init__() 也有些人喜欢

  • Python装饰器的函数式编程详解

    Python的装饰器的英文名叫Decorator,当你看到这个英文名的时候,你可能会把其跟Design Pattern里的Decorator搞混了,其实这是完全不同的两个东西.虽然好像,他们要干的事都很相似--都是想要对一个已有的模块做一些"修饰工作",所谓修饰工作就是想给现有的模块加上一些小装饰(一些小功能,这些小功能可能好多模块都会用到),但又不让这个小装饰(小功能)侵入到原有的模块中的代码里去.但是OO的Decorator简直就是一场恶梦,不信你就去看看wikipedia上的词条

  • Python合并多个装饰器小技巧

    django程序,需要写很多api,每个函数都需要几个装饰器,例如 复制代码 代码如下: @csrf_exempt  @require_POST  def  foo(request):      pass 既然那么多个方法都需要写2个装饰器,或者多个,有啥办法把多个合并成一行呢? 上面的函数执行过程应该是 复制代码 代码如下: csrf_exempt(require_POST(foo)) 修改成 复制代码 代码如下: def compose(*funs):      def deco(f): 

  • Python多层装饰器用法实例分析

    本文实例讲述了Python多层装饰器用法.分享给大家供大家参考,具体如下: 前言 Python 的装饰器能够在不破坏函数原本结构的基础上,对函数的功能进行补充.当我们需要对一个函数补充不同的功能,可能需要用到多层的装饰器.在我的使用过程中,遇到了两种装饰器层叠的情况,这里把这两种情况写下来,作为踩坑记录. 情况1 def A(funC): def decorated_C(funE): def decorated_E_by_CA(*args, **kwargs): out = funC(funE)

  • Python中的装饰器用法详解

    本文实例讲述了Python中的装饰器用法.分享给大家供大家参考.具体分析如下: 这里还是先由stackoverflow上面的一个问题引起吧,如果使用如下的代码: 复制代码 代码如下: @makebold @makeitalic def say():    return "Hello" 打印出如下的输出: <b><i>Hello<i></b> 你会怎么做?最后给出的答案是: 复制代码 代码如下: def makebold(fn):    

  • Python装饰器用法实例总结

    本文实例讲述了Python装饰器用法.分享给大家供大家参考,具体如下: 一.装饰器是什么 python的装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象.简单的说装饰器就是一个用来返回函数的函数. 它经常用于有切面需求的场景,比如:插入日志.性能测试.事务处理.缓存.权限校验等场景.装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码并继续重用. 概括的讲,装饰器的作用就是为已经

随机推荐