浅谈Python NLP入门教程

正文

本文简要介绍Python自然语言处理(NLP),使用Python的NLTK库。NLTK是Python的自然语言处理工具包,在NLP领域中,最常使用的一个Python库。

什么是NLP?

简单来说,自然语言处理(NLP)就是开发能够理解人类语言的应用程序或服务。

这里讨论一些自然语言处理(NLP)的实际应用例子,如语音识别、语音翻译、理解完整的句子、理解匹配词的同义词,以及生成语法正确完整句子和段落。

这并不是NLP能做的所有事情。

NLP实现

搜索引擎: 比如谷歌,Yahoo等。谷歌搜索引擎知道你是一个技术人员,所以它显示与技术相关的结果;

社交网站推送:比如Facebook News Feed。如果News Feed算法知道你的兴趣是自然语言处理,就会显示相关的广告和帖子。

语音引擎:比如Apple的Siri。

垃圾邮件过滤:如谷歌垃圾邮件过滤器。和普通垃圾邮件过滤不同,它通过了解邮件内容里面的的深层意义,来判断是不是垃圾邮件。

NLP库

下面是一些开源的自然语言处理库(NLP):

  1. Natural language toolkit (NLTK);
  2. Apache OpenNLP;
  3. Stanford NLP suite;
  4. Gate NLP library

其中自然语言工具包(NLTK)是最受欢迎的自然语言处理库(NLP),它是用Python编写的,而且背后有非常强大的社区支持。

NLTK也很容易上手,实际上,它是最简单的自然语言处理(NLP)库。

在这个NLP教程中,我们将使用Python NLTK库。

安装 NLTK

如果您使用的是Windows/Linux/Mac,您可以使用pip安装NLTK:

pip install nltk

打开python终端导入NLTK检查NLTK是否正确安装:

import nltk

如果一切顺利,这意味着您已经成功地安装了NLTK库。首次安装了NLTK,需要通过运行以下代码来安装NLTK扩展包:

import nltk
nltk.download()

这将弹出NLTK 下载窗口来选择需要安装哪些包:

您可以安装所有的包,因为它们的大小都很小,所以没有什么问题。

使用Python Tokenize文本

首先,我们将抓取一个web页面内容,然后分析文本了解页面的内容。

我们将使用urllib模块来抓取web页面:

import urllib.request
response = urllib.request.urlopen('http://php.net/')
html = response.read()
print (html)

从打印结果中可以看到,结果包含许多需要清理的HTML标签。

然后BeautifulSoup模块来清洗这样的文字:

from bs4 import BeautifulSoup
import urllib.request
response = urllib.request.urlopen('http://php.net/')
html = response.read()
soup = BeautifulSoup(html,"html5lib")
# 这需要安装html5lib模块
text = soup.get_text(strip=True)
print (text)

现在我们从抓取的网页中得到了一个干净的文本。

下一步,将文本转换为tokens,像这样:

from bs4 import BeautifulSoup
import urllib.request
response = urllib.request.urlopen('http://php.net/')
html = response.read()
soup = BeautifulSoup(html,"html5lib")
text = soup.get_text(strip=True)
tokens = text.split()
print (tokens)

统计词频

text已经处理完毕了,现在使用Python NLTK统计token的频率分布。

可以通过调用NLTK中的FreqDist()方法实现:

from bs4 import BeautifulSoup
import urllib.request
import nltk

response = urllib.request.urlopen('http://php.net/')
html = response.read()
soup = BeautifulSoup(html,"html5lib")
text = soup.get_text(strip=True)
tokens = text.split()
freq = nltk.FreqDist(tokens)
for key,val in freq.items():
  print (str(key) + ':' + str(val))

如果搜索输出结果,可以发现最常见的token是PHP。

您可以调用plot函数做出频率分布图:

freq.plot(20, cumulative=False)
# 需要安装matplotlib库

这上面这些单词。比如of,a,an等等,这些词都属于停用词。

一般来说,停用词应该删除,防止它们影响分析结果。

处理停用词

NLTK自带了许多种语言的停用词列表,如果你获取英文停用词:

from nltk.corpus import stopwords
stopwords.words('english')

现在,修改下代码,在绘图之前清除一些无效的token:

clean_tokens = list()
sr = stopwords.words('english')
for token in tokens:
  if token not in sr:
    clean_tokens.append(token)

最终的代码应该是这样的:

from bs4 import BeautifulSoup
import urllib.request
import nltk
from nltk.corpus import stopwords

response = urllib.request.urlopen('http://php.net/')
html = response.read()
soup = BeautifulSoup(html,"html5lib")
text = soup.get_text(strip=True)
tokens = text.split()
clean_tokens = list()
sr = stopwords.words('english')
for token in tokens:
  if not token in sr:
    clean_tokens.append(token)
freq = nltk.FreqDist(clean_tokens)
for key,val in freq.items():
  print (str(key) + ':' + str(val))

现在再做一次词频统计图,效果会比之前好些,因为剔除了停用词:

freq.plot(20,cumulative=False)

使用NLTK Tokenize文本

在之前我们用split方法将文本分割成tokens,现在我们使用NLTK来Tokenize文本。

文本没有Tokenize之前是无法处理的,所以对文本进行Tokenize非常重要的。token化过程意味着将大的部件分割为小部件。

你可以将段落tokenize成句子,将句子tokenize成单个词,NLTK分别提供了句子tokenizer和单词tokenizer。

假如有这样这段文本:

Hello Adam, how are you? I hope everything is going well. Today is a good day, see you dude.

使用句子tokenizer将文本tokenize成句子:

from nltk.tokenize import sent_tokenize

mytext = "Hello Adam, how are you? I hope everything is going well. Today is a good day, see you dude."
print(sent_tokenize(mytext))

输出如下:

['Hello Adam, how are you?', 'I hope everything is going well.', 'Today is a good day, see you dude.']

这是你可能会想,这也太简单了,不需要使用NLTK的tokenizer都可以,直接使用正则表达式来拆分句子就行,因为每个句子都有标点和空格。

那么再来看下面的文本:

Hello Mr. Adam, how are you? I hope everything is going well. Today is a good day, see you dude.

这样如果使用标点符号拆分,Hello Mr将会被认为是一个句子,如果使用NLTK:

from nltk.tokenize import sent_tokenize
mytext = "Hello Mr. Adam, how are you? I hope everything is going well. Today is a good day, see you dude."
print(sent_tokenize(mytext))

输出如下:
['Hello Mr. Adam, how are you?', 'I hope everything is going well.', 'Today is a good day, see you dude.']

这才是正确的拆分。

接下来试试单词tokenizer:

from nltk.tokenize import word_tokenize

mytext = "Hello Mr. Adam, how are you? I hope everything is going well. Today is a good day, see you dude."
print(word_tokenize(mytext))

输出如下:

['Hello', 'Mr.', 'Adam', ',', 'how', 'are', 'you', '?', 'I', 'hope', 'everything', 'is', 'going', 'well', '.', 'Today', 'is', 'a', 'good', 'day', ',', 'see', 'you', 'dude', '.']

Mr.这个词也没有被分开。NLTK使用的是punkt模块的PunktSentenceTokenizer,它是NLTK.tokenize的一部分。而且这个tokenizer经过训练,可以适用于多种语言。

非英文Tokenize

Tokenize时可以指定语言:

from nltk.tokenize import sent_tokenize

mytext = "Bonjour M. Adam, comment allez-vous? J'espère que tout va bien. Aujourd'hui est un bon jour."
print(sent_tokenize(mytext,"french"))

输出结果如下:

['Bonjour M. Adam, comment allez-vous?', "J'espère que tout va bien.", "Aujourd'hui est un bon jour."]

同义词处理

使用nltk.download()安装界面,其中一个包是WordNet。

WordNet是一个为自然语言处理而建立的数据库。它包括一些同义词组和一些简短的定义。

您可以这样获取某个给定单词的定义和示例:

from nltk.corpus import wordnet

syn = wordnet.synsets("pain")
print(syn[0].definition())
print(syn[0].examples())

输出结果是:

a symptom of some physical hurt or disorder
['the patient developed severe pain and distension']

WordNet包含了很多定义:

from nltk.corpus import wordnet

syn = wordnet.synsets("NLP")
print(syn[0].definition())
syn = wordnet.synsets("Python")
print(syn[0].definition())

结果如下:

the branch of information science that deals with natural language information
large Old World boas

可以像这样使用WordNet来获取同义词:

from nltk.corpus import wordnet
synonyms = []
for syn in wordnet.synsets('Computer'):
  for lemma in syn.lemmas():
    synonyms.append(lemma.name())
print(synonyms)

输出:

['computer', 'computing_machine', 'computing_device', 'data_processor', 'electronic_computer', 'information_processing_system', 'calculator', 'reckoner', 'figurer', 'estimator', 'computer']

反义词处理

也可以用同样的方法得到反义词:

from nltk.corpus import wordnet

antonyms = []
for syn in wordnet.synsets("small"):
  for l in syn.lemmas():
    if l.antonyms():
      antonyms.append(l.antonyms()[0].name())
print(antonyms)

输出:
['large', 'big', 'big']

词干提取

语言形态学和信息检索里,词干提取是去除词缀得到词根的过程,例如working的词干为work。

搜索引擎在索引页面时就会使用这种技术,所以很多人为相同的单词写出不同的版本。

有很多种算法可以避免这种情况,最常见的是波特词干算法。NLTK有一个名为PorterStemmer的类,就是这个算法的实现:

from nltk.stem import PorterStemmer
stemmer = PorterStemmer()
print(stemmer.stem('working'))
print(stemmer.stem('worked'))

输出结果是:

work
work

还有其他的一些词干提取算法,比如 Lancaster词干算法。

非英文词干提取

除了英文之外,SnowballStemmer还支持13种语言。

支持的语言:

from nltk.stem import SnowballStemmer

print(SnowballStemmer.languages)

'danish', 'dutch', 'english', 'finnish', 'french', 'german', 'hungarian', 'italian', 'norwegian', 'porter', 'portuguese', 'romanian', 'russian', 'spanish', 'swedish'

你可以使用SnowballStemmer类的stem函数来提取像这样的非英文单词:

from nltk.stem import SnowballStemmer
french_stemmer = SnowballStemmer('french')
print(french_stemmer.stem("French word"))

单词变体还原

单词变体还原类似于词干,但不同的是,变体还原的结果是一个真实的单词。不同于词干,当你试图提取某些词时,它会产生类似的词:

from nltk.stem import PorterStemmer
stemmer = PorterStemmer()
print(stemmer.stem('increases'))

结果:

increas

现在,如果用NLTK的WordNet来对同一个单词进行变体还原,才是正确的结果:

from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
print(lemmatizer.lemmatize('increases'))

结果:

increase

结果可能会是一个同义词或同一个意思的不同单词。

有时候将一个单词做变体还原时,总是得到相同的词。

这是因为语言的默认部分是名词。要得到动词,可以这样指定:

from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
print(lemmatizer.lemmatize('playing', pos="v"))

结果:
play

实际上,这也是一种很好的文本压缩方式,最终得到文本只有原先的50%到60%。

结果还可以是动词(v)、名词(n)、形容词(a)或副词(r):

from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
print(lemmatizer.lemmatize('playing', pos="v"))
print(lemmatizer.lemmatize('playing', pos="n"))
print(lemmatizer.lemmatize('playing', pos="a"))
print(lemmatizer.lemmatize('playing', pos="r"))

输出:
play
playing
playing
playing

词干和变体的区别

通过下面例子来观察:

from nltk.stem import WordNetLemmatizer
from nltk.stem import PorterStemmer

stemmer = PorterStemmer()
lemmatizer = WordNetLemmatizer()
print(stemmer.stem('stones'))
print(stemmer.stem('speaking'))
print(stemmer.stem('bedroom'))
print(stemmer.stem('jokes'))
print(stemmer.stem('lisa'))
print(stemmer.stem('purple'))
print('----------------------')
print(lemmatizer.lemmatize('stones'))
print(lemmatizer.lemmatize('speaking'))
print(lemmatizer.lemmatize('bedroom'))
print(lemmatizer.lemmatize('jokes'))
print(lemmatizer.lemmatize('lisa'))
print(lemmatizer.lemmatize('purple'))

输出:
stone
speak
bedroom
joke
lisa
purpl
---------------------
stone
speaking
bedroom
joke
lisa
purple

词干提取不会考虑语境,这也是为什么词干提取比变体还原快且准确度低的原因。

个人认为,变体还原比词干提取更好。单词变体还原返回一个真实的单词,即使它不是同一个单词,也是同义词,但至少它是一个真实存在的单词。

如果你只关心速度,不在意准确度,这时你可以选用词干提取。

在此NLP教程中讨论的所有步骤都只是文本预处理。在以后的文章中,将会使用Python NLTK来实现文本分析。

我已经尽量使文章通俗易懂。希望能对你有所帮助。也希望大家多多支持我们。

(0)

相关推荐

  • 浅谈Python NLP入门教程

    正文 本文简要介绍Python自然语言处理(NLP),使用Python的NLTK库.NLTK是Python的自然语言处理工具包,在NLP领域中,最常使用的一个Python库. 什么是NLP? 简单来说,自然语言处理(NLP)就是开发能够理解人类语言的应用程序或服务. 这里讨论一些自然语言处理(NLP)的实际应用例子,如语音识别.语音翻译.理解完整的句子.理解匹配词的同义词,以及生成语法正确完整句子和段落. 这并不是NLP能做的所有事情. NLP实现 搜索引擎: 比如谷歌,Yahoo等.谷歌搜索引

  • 浅谈Node 调试工具入门教程

    JavaScript 程序越来越复杂,调试工具的重要性日益凸显.客户端脚本有浏览器,Node 脚本怎么调试呢? 2016年,Node 决定将 Chrome 浏览器的"开发者工具"作为官方的调试工具,使得 Node 脚本也可以使用图形界面调试,这大大方便了开发者. 本文介绍如何使用 Node 脚本的调试工具. 一.示例程序 为了方便讲解,下面是一个示例脚本.首先,新建一个工作目录,并进入该目录. $ mkdir debug-demo $ cd debug-demo 然后,生成 packa

  • 浅谈python可视化包Bokeh

    本文研究的主要是python可视化包Bokeh的相关内容,具体如下. 问题:需要把pandas的数据绘图并通过网页显示,matplotlib需要先保存图像,不合适. 解决:在网上搜了一下,找到一篇介绍文章 python可视化工具概述,其中介绍了几个python包,总结如下: Pandas对于简单绘图,可以随手用,但你需要学习定制matplotlib. Seaborn可以支持更多复杂的可视化方式,但仍然需要matplotlib知识,上色功能是个亮点. ggplot有很多功能,但还需要发展. bok

  • 浅谈Python中的字符串

    可能大多数人在学习C语言的时候,最先接触的数据类型就是字符串,因为大多教程都是以"Hello world"这个程序作为入门程序,这个程序中要打印的"Hello world"就是字符串.如果你做过自然语言处理方面的研究,并且用Python去做过相关实验,你肯定会体会到Python在字符串处理方面相对于其他语言的明显优势之处.今天我们来了解一下Python中的字符串,看看它的用法. 一.Python中如何声明字符串 在Python中声明一个字符串通常有三种方法:在它的两

  • 浅谈python中copy和deepcopy中的区别

    在下是个编程爱好者,最近将魔爪伸向了Python编程.....遇到copy和deepcopy感到很困惑,现在针对这两个方法进行区分,一种是浅复制(copy),一种是深度复制(deepcopy). 首先说一下deepcopy,所谓的深度复制,在这里我理解的是完全复制然后变成一个新的对象,复制的对象和被复制的对象没有任何关系,彼此之间无论怎么改变都相互不影响. 然后说一下copy,在这里我分为两类来说,一种是字典数据类型的copy函数,一种是copy包的copy函数. 一.字典数据类型的copy函数

  • 浅谈python中的占位符

    占位符,顾名思义就是插在输出里站位的符号.我们可以把它理解成我们预定饭店.当我们告诉饭店的时候,饭店的系统里会有我们的预定位置.虽然我们现在没有去但是后来的顾客就排在我们后面. 常见的占位符有三种: 1.%d 整数占位符 >>>'我考了%d分' % 20 '我考了20分' >>>'我考了%d分' % 20.5 ;我考了20分' >>>"我考了%d分,进步了%d分" % (50,10) "我考了50分,进步了10分"

  • 浅谈python numpy中nonzero()的用法

    nonzero函数返回非零元素的目录. 返回值为元组, 两个值分别为两个维度, 包含了相应维度上非零元素的目录值. import numpy as np A = np.mat([[0,1,2,3,4,3,2,1,0],[0,1,2,3,4,5,6,7,0]]) x = A.nonzero() #取出矩阵中的非零元素的坐标 print x #输出是一个元组,两个维度.一一对应, #返回非零元素在矩阵中的位置,前一个列表存放非零行坐标,后一个列表存放非零元素列坐标 #(array([0, 0, 0,

  • 浅谈Python Opencv中gamma变换的使用详解

    伽马变换就是用来图像增强,其提升了暗部细节,简单来说就是通过非线性变换,让图像从暴光强度的线性响应变得更接近人眼感受的响应,即将漂白(相机曝光)或过暗(曝光不足)的图片,进行矫正. 伽马变换的基本形式如下: 大于1时,对图像的灰度分布直方图具有拉伸作用(使灰度向高灰度值延展),而小于1时,对图像的灰度分布直方图具有收缩作用(是使灰度向低灰度值方向靠拢). #分道计算每个通道的直方图 img0 = cv2.imread('12.jpg') hist_b = cv2.calcHist([img0],

  • 浅谈Python数学建模之线性规划

    目录 一.求解方法.算法和编程方案 1.1.线性规划问题的求解方法 1.2.线性规划的最快算法 1.3.选择适合自己的编程方案 二.PuLP库求解线性规划问题 2.1.线性规划问题的描述 2.2.PuLP 求解线性规划问题的步骤 2.3.Python例程:线性规划问题 三.小结 一.求解方法.算法和编程方案 线性规划 (Linear Programming,LP) 是很多数模培训讲的第一个算法,算法很简单,思想很深刻. 线性规划问题是中学数学的内容,鸡兔同笼就是一个线性规划问题.数学规划的题目在

  • 浅谈Python数学建模之整数规划

    目录 一.从线性规划到整数规划 1.1.为什么会有整数规划? 1.2.四舍五入就能得到整数解吗? 二.整数规划的求解方法 2.1.分支定界法(Branch and bound) 2.2.割平面法(Cutting plane) 2.3.整数规划的编程方案 三.PuLP 求解整数规划问题 3.1.案例问题描述 3.2.建模过程分析 3.2.1.问题定义 3.2.2.模型构建 3.2.3.模型求解 3.3.Python 例程 3.4.Python 例程运行结果 一.从线性规划到整数规划 1.1.为什么

随机推荐