Java并发编程包中atomic的实现原理示例详解

线程安全:

当多个线程访问某个类时,不管运行时环境采用何种调度方式或者这些进程将如何交替执行,并且在主调代码中不需要任何额外的同步或协调,这个类都能表现出正确的行为,那么就称这个类时线程安全的。

线程安全主要体现在以下三个方面:

原子性:提供了互斥访问,同一时刻只能有一个线程对它进行操作

可见性:一个线程对主内存的修改可以及时的被其他线程观察到

有序性:一个线程观察其他线程中的指令执行顺序,由于指令重排序的存在,该观察结果一般杂乱无序

引子

在多线程的场景中,我们需要保证数据安全,就会考虑同步的方案,通常会使用synchronized或者lock来处理,使用了synchronized意味着内核态的一次切换。这是一个很重的操作。

有没有一种方式,可以比较便利的实现一些简单的数据同步,比如计数器等等。concurrent包下的atomic提供我们这么一种轻量级的数据同步的选择。

使用例子

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.atomic.AtomicInteger; 

public class App { 

 public static void main(String[] args) throws Exception {
  CountDownLatch countDownLatch = new CountDownLatch(100); 

  AtomicInteger atomicInteger = new AtomicInteger(0);
  for (int i = 0; i < 100; i++) {
   new Thread() {
    @Override
    public void run() {
     atomicInteger.getAndIncrement(); 

     countDownLatch.countDown();
    }
   }.start();
  } 

  countDownLatch.await(); 

  System.out.println(atomicInteger.get());
 }
} 

在以上代码中,使用AtomicInteger声明了一个全局变量,并且在多线程中进行自增,代码中并没有进行显示的加锁。

以上代码的输出结果,永远都是100。如果将AtomicInteger换成Integer,打印结果基本都是小于100。

也就说明AtomicInteger声明的变量,在多线程场景中的自增操作是可以保证线程安全的。接下来我们分析下其原理。

原理

我们可以看一下AtomicInteger的代码

他的值是存在一个volatile的int里面。volatile只能保证这个变量的可见性。不能保证他的原子性。

可以看看getAndIncrement这个类似i++的函数,可以发现,是调用了UnSafe中的getAndAddInt。

UnSafe是何方神圣?UnSafe提供了java可以直接操作底层的能力。

进一步,我们可以发现实现方式:

如何保证原子性:自旋 + CAS(乐观锁)。在这个过程中,通过compareAndSwapInt比较更新value值,如果更新失败,重新获取旧值,然后更新。

优缺点

CAS相对于其他锁,不会进行内核态操作,有着一些性能的提升。但同时引入自旋,当锁竞争较大的时候,自旋次数会增多。cpu资源会消耗很高。

换句话说,CAS+自旋适合使用在低并发有同步数据的应用场景。

Java 8做出的改进和努力

在Java 8中引入了4个新的计数器类型,LongAdder、LongAccumulator、DoubleAdder、DoubleAccumulator。他们都是继承于Striped64。

在LongAdder 与AtomicLong有什么区别?

Atomic*遇到的问题是,只能运用于低并发场景。因此LongAddr在这基础上引入了分段锁的概念。可以参考《JDK8系列之LongAdder解析》一起看看做了什么。

大概就是当竞争不激烈的时候,所有线程都是通过CAS对同一个变量(Base)进行修改,当竞争激烈的时候,会将根据当前线程哈希到对于Cell上进行修改(多段锁)。

可以看到大概实现原理是:通过CAS乐观锁保证原子性,通过自旋保证当次修改的最终修改成功,通过降低锁粒度(多段锁)增加并发性能。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对我们的支持。

(0)

相关推荐

  • Java并发编程this逃逸问题总结

    this逃逸是指在构造函数返回之前其他线程就持有该对象的引用. 调用尚未构造完全的对象的方法可能引发令人疑惑的错误, 因此应该避免this逃逸的发生. this逃逸经常发生在构造函数中启动线程或注册监听器时, 如: public class ThisEscape { public ThisEscape() { new Thread(new EscapeRunnable()).start(); // ... } private class EscapeRunnable implements Run

  • Java并发编程学习之Unsafe类与LockSupport类源码详析

    一.Unsafe类的源码分析 JDK的rt.jar包中的Unsafe类提供了硬件级别的原子操作,Unsafe里面的方法都是native方法,通过使用JNI的方式来访问本地C++实现库. rt.jar 中 Unsafe 类主要函数讲解, Unsafe 类提供了硬件级别的原子操作,可以安全的直接操作内存变量,其在 JUC 源码中被广泛的使用,了解其原理为研究 JUC 源码奠定了基础. 首先我们先了解Unsafe类中主要方法的使用,如下: 1.long objectFieldOffset(Field

  • java并发编程实例分析

    java并发编程是java程序设计语言的一块重点,在大部分的业务场景中都需要并发编程. 比如:并发的去处理http请求,这样就可以使得一台机器同时处理多个请求,大大提高业务的响应效率,从而使用用户体验更加流畅. java如何并发编程,要注意以下几个方面: 1.java语言中的多线程操作:创建和启动线程的几种方式. 2.共享变量的同步问题,要保证线程安全,辨别哪些变量是线程安全的.那些变量是线程不安全的,对于不安全的变量我们要想办法让其同步,一般也就是加锁. 3.线程锁:包括方法锁和synchro

  • Java并发编程Callable与Future的应用实例代码

    本文主要探究的是java并发编程callable与future的使用,分享了相关实例代码,具体介绍如下. 我们都知道实现多线程有2种方式,一种是继承Thread,一种是实现Runnable,但这2种方式都有一个缺陷,在任务完成后无法获取返回结果.要想获得返回结果,就得使用Callable,Callable任务可以有返回值,但是没法直接从Callable任务里获取返回值:想要获取Callabel任务的返回值,需要用到Future.所以Callable任务和Future模式,通常结合起来使用. 试想

  • Java并发编程学习之ThreadLocal源码详析

    前言 多线程的线程安全问题是微妙而且出乎意料的,因为在没有进行适当同步的情况下多线程中各个操作的顺序是不可预期的,多线程访问同一个共享变量特别容易出现并发问题,特别是多个线程需要对一个共享变量进行写入时候,为了保证线程安全, 一般需要使用者在访问共享变量的时候进行适当的同步,如下图所示: 可以看到同步的措施一般是加锁,这就需要使用者对锁也要有一定了解,这显然加重了使用者的负担.那么有没有一种方式当创建一个变量的时候,每个线程对其进行访问的时候访问的是自己线程的变量呢?其实ThreaLocal就可

  • java编程多线程并发处理实例解析

    本文主要是通过一个银行用户取钱的实例,演示java编程多线程并发处理场景,具体如下. 从一个例子入手:实现一个银行账户取钱场景的实例代码. 第一个类:Account.java 账户类: package cn.edu.byr.test; public class Account { private String accountNo; private double balance; public Account(){ } public Account(String accountNo,double

  • Java并发编程包中atomic的实现原理示例详解

    线程安全: 当多个线程访问某个类时,不管运行时环境采用何种调度方式或者这些进程将如何交替执行,并且在主调代码中不需要任何额外的同步或协调,这个类都能表现出正确的行为,那么就称这个类时线程安全的. 线程安全主要体现在以下三个方面: 原子性:提供了互斥访问,同一时刻只能有一个线程对它进行操作 可见性:一个线程对主内存的修改可以及时的被其他线程观察到 有序性:一个线程观察其他线程中的指令执行顺序,由于指令重排序的存在,该观察结果一般杂乱无序 引子 在多线程的场景中,我们需要保证数据安全,就会考虑同步的

  • java并发编程包JUC线程同步CyclicBarrier语法示例

    目录 1.创建CyclicBarrier障碍 2.在CyclicBarrier障碍处等待 3.CyclicBarrierAction 4.CyclicBarrier例子 在之前的文章中已经为大家介绍了java并发编程的工具:BlockingQueue接口.ArrayBlockingQueue.DelayQueue.LinkedBlockingQueue.PriorityBlockingQueue.SynchronousQueue.BlockingDeque接口.ConcurrentHashMap

  • java并发编程关键字volatile保证可见性不保证原子性详解

    目录 关于可见性 关于指令重排 volatile关键字可以说是Java虚拟机提供的最轻量级的同步机制,但对于为什么它只能保证可见性,不保证原子性,它又是如何禁用指令重排的,还有很多同学没彻底理解 相信我,坚持看完这篇文章,你将牢牢掌握一个Java核心知识点 先说它的两个作用: 保证变量在内存中对线程的可见性禁用指令重排 每个字都认识,凑在一起就麻了 这两个作用通常很不容易被我们Java开发人员正确.完整地理解,以至于许多同学不能正确地使用volatile 关于可见性 不多bb,码来 public

  • JavaScript中new操作符的原理示例详解

    new的用处 new的作用是通过构造函数来创建一个实例对象,该实例与原型和构造函数之间的关系如下图所示: 先来总结一下 创建一个空对象 空对象的内部属性 __proto__ 赋值为构造函数的 prototype 属性 将构造函数的 this 指向空对象 执行构造函数内部代码 返回该新对象 详细说明 执行 new 操作时会依次经过以下步骤: 1.创建一个空对象 空对象是 Object 的实例,即 {} . let obj = {} 2.空对象的内部属性 __proto__ 赋值为构造函数的 pro

  • java中注解机制及其原理的详解

    java中注解机制及其原理的详解 什么是注解 注解也叫元数据,例如我们常见的@Override和@Deprecated,注解是JDK1.5版本开始引入的一个特性,用于对代码进行说明,可以对包.类.接口.字段.方法参数.局部变量等进行注解.它主要的作用有以下四方面: 生成文档,通过代码里标识的元数据生成javadoc文档. 编译检查,通过代码里标识的元数据让编译器在编译期间进行检查验证. 编译时动态处理,编译时通过代码里标识的元数据动态处理,例如动态生成代码. 运行时动态处理,运行时通过代码里标识

  • java编程创建型设计模式工厂方法模式示例详解

    目录 1.什么是工厂方法模式? 2.案例实现 3.JDK中的工厂方法模式 1.什么是工厂方法模式? 工厂方法模式设计方案:  将披萨项目的实例化功能抽象成抽象方法,在不同的口味点餐子类中具体实现. 工厂方法模式:  定义了一个创建对象的抽象方法,由子类决定要实例化的类.工厂方法模式将对象的实例化推迟到子类. 何时使用?  不同条件下创建不用实例时.方法是让子类实现工厂接口. 2.案例实现 假如说,我们现在有这样一个需求:客户在点披萨时,可以点不同口味的披萨,比如北京的奶酪pizza.北京的胡椒p

  • C#面向对象编程中接口隔离原则的示例详解

    目录 接口隔离原则 C# 示例 糟糕的示范 正确的示范 总结 在面向对象编程中,SOLID 是五个设计原则的首字母缩写,旨在使软件设计更易于理解.灵活和可维护.这些原则是由美国软件工程师和讲师罗伯特·C·马丁(Robert Cecil Martin)提出的许多原则的子集,在他2000年的论文<设计原则与设计模式>中首次提出. SOLID 原则包含: S:单一功能原则(single-responsibility principle) O:开闭原则(open-closed principle) L

  • C#面向对象编程中里氏替换原则的示例详解

    目录 里氏替换原则 C# 示例 糟糕的示范 正确的示范 总结 在面向对象编程中,SOLID 是五个设计原则的首字母缩写,旨在使软件设计更易于理解.灵活和可维护.这些原则是由美国软件工程师和讲师罗伯特·C·马丁(Robert Cecil Martin)提出的许多原则的子集,在他2000年的论文<设计原则与设计模式>中首次提出. SOLID 原则包含: S:单一功能原则(single-responsibility principle) O:开闭原则(open-closed principle) L

  • C#面向对象编程中开闭原则的示例详解

    目录 开闭原则 C# 示例 改进 总结 在面向对象编程中,SOLID 是五个设计原则的首字母缩写,旨在使软件设计更易于理解.灵活和可维护.这些原则是由美国软件工程师和讲师罗伯特·C·马丁(Robert Cecil Martin)提出的许多原则的子集,在他2000年的论文<设计原则与设计模式>中首次提出. SOLID 原则包含: S:单一功能原则(single-responsibility principle) O:开闭原则(open-closed principle) L:里氏替换原则(Lis

  • C#面向对象编程中依赖反转原则的示例详解

    在面向对象编程中,SOLID 是五个设计原则的首字母缩写,旨在使软件设计更易于理解.灵活和可维护.这些原则是由美国软件工程师和讲师罗伯特·C·马丁(Robert Cecil Martin)提出的许多原则的子集,在他2000年的论文<设计原则与设计模式>中首次提出. SOLID 原则包含: S:单一功能原则(single-responsibility principle) O:开闭原则(open-closed principle) L:里氏替换原则(Liskov substitution pri

随机推荐