tensorflow 获取模型所有参数总和数量的方法

实例如下所示:

from functools import reduce
from operator import mul

def get_num_params():
 num_params = 0
 for variable in tf.trainable_variables():
  shape = variable.get_shape()
  num_params += reduce(mul, [dim.value for dim in shape], 1)
 return num_params

以上这篇tensorflow 获取模型所有参数总和数量的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python使用tensorflow保存、加载和使用模型的方法

    使用Tensorflow进行深度学习训练的时候,需要对训练好的网络模型和各种参数进行保存,以便在此基础上继续训练或者使用.介绍这方面的博客有很多,我发现写的最好的是这一篇官方英文介绍: http://cv-tricks.com/tensorflow-tutorial/save-restore-tensorflow-models-quick-complete-tutorial/ 我对这篇文章进行了整理和汇总. 首先是模型的保存.直接上代码: #!/usr/bin/env python #-*- c

  • TensorFlow模型保存和提取的方法

    一.TensorFlow模型保存和提取方法 1. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取.tf.train.Saver对象saver的save方法将TensorFlow模型保存到指定路径中,saver.save(sess,"Model/model.ckpt") ,实际在这个文件目录下会生成4个人文件: checkpoint文件保存了一个录下多有的模型文件列表,model.ckpt.meta保存了TensorFlow计算图的结构信息,model

  • TensorFlow模型保存/载入的两种方法

    TensorFlow 模型保存/载入 我们在上线使用一个算法模型的时候,首先必须将已经训练好的模型保存下来.tensorflow保存模型的方式与sklearn不太一样,sklearn很直接,一个sklearn.externals.joblib的dump与load方法就可以保存与载入使用.而tensorflow由于有graph, operation 这些概念,保存与载入模型稍显麻烦. 一.基本方法 网上搜索tensorflow模型保存,搜到的大多是基本的方法.即 保存 定义变量 使用saver.s

  • 将TensorFlow的模型网络导出为单个文件的方法

    有时候,我们需要将TensorFlow的模型导出为单个文件(同时包含模型架构定义与权重),方便在其他地方使用(如在c++中部署网络).利用tf.train.write_graph()默认情况下只导出了网络的定义(没有权重),而利用tf.train.Saver().save()导出的文件graph_def与权重是分离的,因此需要采用别的方法. 我们知道,graph_def文件中没有包含网络中的Variable值(通常情况存储了权重),但是却包含了constant值,所以如果我们能把Variable

  • tensorflow 获取模型所有参数总和数量的方法

    实例如下所示: from functools import reduce from operator import mul def get_num_params(): num_params = 0 for variable in tf.trainable_variables(): shape = variable.get_shape() num_params += reduce(mul, [dim.value for dim in shape], 1) return num_params 以上这

  • python通过urllib2获取带有中文参数url内容的方法

    本文实例讲述了python通过urllib2获取带有中文参数url内容的方法.分享给大家供大家参考.具体如下: 对于中文的参数如果不进行编码的话,python的urllib2直接处理会报错,我们可以先将中文转换成utf-8编码,然后使用urllib2.quote方法对参数进行url编码后传递. content = u'你好 jb51.net' content = content.encode('utf-8') content = urllib2.quote(content) api_url =

  • 通过JS获取Request.QueryString()参数的值实现方法

    如下所示: function getArgs(strParame) { var args = new Object( ); var query = location.search.substring(1); // Get query string var pairs = query.split("&"); // Break at ampersand for(var i = 0; i < pairs.length; i++) { var pos = pairs[i].ind

  • vue 获取url里参数的两种方法小结

    我就废话不多说了,大家还是直接看代码吧~ 第一种: const query = Qs.parse(location.search.substring(1)) let passport = query.passport; 第二种: var query=this.$route.query; let lat = query.lat; 补充知识:Vue通过query获取路由参数 现在来讲Vue通过query获取路由参数 可以看见com1组件里的路由参数为 name=zhangsan&job=teache

  • tensorflow获取预训练模型某层参数并赋值到当前网络指定层方式

    已经有了一个预训练的模型,我需要从其中取出某一层,把该层的weights和biases赋值到新的网络结构中,可以使用tensorflow中的pywrap_tensorflow(用来读取预训练模型的参数值)结合Session.assign()进行操作. 这种需求即预训练模型可能为单分支网络,当前网络为多分支,我需要把单分支A复用到到多个分支去(B,C,D). 先导入对应的工具包 from tensorflow.python import pywrap_tensorflow 接下来的操作在一个tf.

  • pytorch获取模型某一层参数名及参数值方式

    1.Motivation: I wanna modify the value of some param; I wanna check the value of some param. The needed function: 2.state_dict() #generator type model.modules()#generator type named_parameters()#OrderDict type from torch import nn import torch #creat

  • TensorFlow获取加载模型中的全部张量名称代码

    核心代码如下: [tensor.name for tensor in tf.get_default_graph().as_graph_def().node] 实例代码:(加载了Inceptino_v3的模型,并获取该模型所有节点的名称) # -*- coding: utf-8 -*- import tensorflow as tf import os model_dir = 'C:/Inception_v3' model_name = 'output_graph.pb' # 读取并创建一个图gr

  • TensorFlow固化模型的实现操作

    前言 TensorFlow目前在移动端是无法training的,只能跑已经训练好的模型,但一般的保存方式只有单一保存参数或者graph的,如何将参数.graph同时保存呢? 生成模型 主要有两种方法生成模型,一种是通过freeze_graph把tf.train.write_graph()生成的pb文件与tf.train.saver()生成的chkp文件固化之后重新生成一个pb文件,这一种现在不太建议使用.另一种是把变量转成常量之后写入PB文件中.我们简单的介绍下freeze_graph方法. f

  • TensorFlow实现模型断点训练,checkpoint模型载入方式

    深度学习中,模型训练一般都需要很长的时间,由于很多原因,导致模型中断训练,下面介绍继续断点训练的方法. 方法一:载入模型时,不必指定迭代次数,一般默认最新 # 保存模型 saver = tf.train.Saver(max_to_keep=1) # 最多保留最新的模型 # 开启会话 with tf.Session() as sess: # saver.restore(sess, './log/' + "model_savemodel.cpkt-" + str(20000)) sess.

随机推荐