Python + OpenCV 实现LBP特征提取的示例代码
背景
看了些许的纹理特征提取的paper,想自己实现其中部分算法,看看特征提取之后的效果是怎样
运行环境
- Mac OS
- Python3.0
- Anaconda3(集成了很多包,浏览器界面编程,清爽)
步骤
导入包
from skimage.transform import rotate from skimage.feature import local_binary_pattern from skimage import data, io,data_dir,filters, feature from skimage.color import label2rgb import skimage import numpy as np import matplotlib.pyplot as plt from PIL import Image import cv2
参数设置
# settings for LBP radius = 1 # LBP算法中范围半径的取值 n_points = 8 * radius # 领域像素点数
图像读取
# 读取图像 image = cv2.imread('img/logo.png') #显示到plt中,需要从BGR转化到RGB,若是cv2.imshow(win_name, image),则不需要转化 image1 = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.subplot(111) plt.imshow(image1)
灰度转换
image = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY) plt.subplot(111) plt.imshow(image, plt.cm.gray)
LBP处理
lbp = local_binary_pattern(image, n_points, radius) plt.subplot(111) plt.imshow(lbp, plt.cm.gray)
边缘提取
edges = filters.sobel(image) plt.subplot(111) plt.imshow(edges, plt.cm.gray)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
相关推荐
-
python实现图片处理和特征提取详解
这是一张灵异事件图...开个玩笑,这就是一张普通的图片. 毫无疑问,上面的那副图画看起来像一幅电脑背景图片.这些都归功于我的妹妹,她能够将一些看上去奇怪的东西变得十分吸引眼球.然而,我们生活在数字图片的年代,我们也很少去想这些图片是在怎么存储在存储器上的或者去想这些图片是如何通过各种变化生成的. 在这篇文章中,我将带着你了解一些基本的图片特征处理.data massaging 依然是一样的:特征提取,但是这里我们还需要对跟多的密集数据进行处理,但同时数据清理是在数据库.表.文本等中进行.这是如何
-
python识别图像并提取文字的实现方法
前言 python图像识别一般基础到的就是tesseract了,在爬虫中处理验证码广泛使用. 安装 安装教程网上大都差不多,Windows下确实比较麻烦,涉及到各种路径.环境变量甚至与linux不同的路径分隔符,所以这里的安装是基于Centos7. 1. 依赖安装 yum install -y automake autoconf libtool gcc gcc-c++ 2. 安装leptonica Leptonica主要用于图像处理和图像分析 原则上所有的库文件都是可以直接用yum安装的,如果想
-
python-opencv在有噪音的情况下提取图像的轮廓实例
对于一般的图像提取轮廓,介绍了一个很好的方法,但是对于有噪声的图像,并不能很好地捕获到目标物体. 比如对于我的鼠标,提取的轮廓效果并不好,因为噪声很多: 所以本文增加了去掉噪声的部分. 首先加载原始图像,并显示图像 img = cv2.imread("temp.jpg") #载入图像 h, w = img.shape[:2] #获取图像的高和宽 cv2.imshow("Origin", img) 然后进行低通滤波处理,进行降噪 blured = cv2.blur(i
-
python多进程读图提取特征存npy
本文实例为大家分享了python多进程读图提取特征存npy的具体代码,供大家参考,具体内容如下 import multiprocessing import os, time, random import numpy as np import cv2 import os import sys from time import ctime import tensorflow as tf image_dir = r"D:/sxl/处理图片/汉字分类/train10/" #图像文件夹路径 da
-
python数字图像处理之骨架提取与分水岭算法
骨架提取与分水岭算法也属于形态学处理范畴,都放在morphology子模块内. 1.骨架提取 骨架提取,也叫二值图像细化.这种算法能将一个连通区域细化成一个像素的宽度,用于特征提取和目标拓扑表示. morphology子模块提供了两个函数用于骨架提取,分别是Skeletonize()函数和medial_axis()函数.我们先来看Skeletonize()函数. 格式为:skimage.morphology.skeletonize(image) 输入和输出都是一幅二值图像. 例1: from s
-
关于Python 的简单栅格图像边界提取方法
在GIS中,栅格属性里有关于栅格自身的信息,背景(nodata value)对于识别一张图像的边界像元尤为重要,我们目的只要把每行每列中的第一次出现不是nodata的像元和最后一次出现nodata的前一个像元就可以了. 对于栅格,可以用ArcPy中的RasterToNumpyArray函数将将栅格转成numpy数组,然后就可以按照所想读取出每行列中首尾像元. 以下是部分代码提取边界像元的核心算法,其实是很简单的一个思路(假设0是nodata value). a=[[0 for col in ra
-
Python实现使用卷积提取图片轮廓功能示例
本文实例讲述了Python实现使用卷积提取图片轮廓功能.分享给大家供大家参考,具体如下: 一.实例描述 将彩色的图片生成带边缘化信息的图片. 本例中先载入一个图片,然后使用一个"3通道输入,1通道输出的3*3卷积核"(即sobel算子),最后使用卷积函数输出生成的结果. 二.代码 ''''' 载入图片并显示 首先将图片放到代码的同级目录下,通过imread载入,然后将其显示并打印出来 ''' import matplotlib.pyplot as plt # plt 用于显示图片 im
-
Python + OpenCV 实现LBP特征提取的示例代码
背景 看了些许的纹理特征提取的paper,想自己实现其中部分算法,看看特征提取之后的效果是怎样 运行环境 Mac OS Python3.0 Anaconda3(集成了很多包,浏览器界面编程,清爽) 步骤 导入包 from skimage.transform import rotate from skimage.feature import local_binary_pattern from skimage import data, io,data_dir,filters, feature fro
-
Python+Opencv实现数字识别的示例代码
一.什么是数字识别? 所谓的数字识别,就是使用算法自动识别出图片中的数字.具体的效果如下图所示: 上图展示了算法的处理效果,算法能够自动的识别到LCD屏幕上面的数字,这在现实场景中具有很大的实际应用价值.下面我们将对它的实现细节进行详细解析. 二.如何实现数字识别? 对于数字识别这个任务而言,它并不是一个新的研究方向,很久之前就有很多的学者们在关注这个问题,并提出了一些可行的解决方案,本小节我们将对这些方案进行简单的总结. 方案一:使用现成的OCR技术. OCR,即文字识别,它是一个比较
-
Python+OpenCV实现角度测量的示例代码
本文介绍如何使用python语言实现角度测量,程序包括鼠标选点.直线斜率计算.角度计算三个子程序和一个主程序.最终实现效果:在图片上用鼠标确认三点,程序将会显示由此三点确定的角度,如下图所示. 1.鼠标选点 # -*- coding: utf-8 -*- import cv2 path = "picture_mqa\\angle_measure.bmp" img = cv2.imread(path) pointsList = [] def mousePoints(event,x,y,f
-
python+opencv实现视频抽帧示例代码
1.数据集简述: 虽然有主流庞大的COCO.VOC数据集,但是科研人员仍需要特殊领域要求的数据集,所以采用人工实地采集的方式进行收集数据集图像:通过拍照收集图像过于繁琐,所以通常是将摄像头无规则的移动旋转以及远近拉缩,进而录制视频:再通过视频抽帧的方式得到大量的图像,再将这些图像进行人工标注处理. 博主通过一个水下录制视频为例子,当这类图像在网上鲜有存在时,要求有关技术人员进行实拍采集,下图即为采集得到的视频. 为了避免不符合项目要求的数据增强,博主要求技术人员在录制视频时最大程度地让摄像头进行
-
python+opencv实现的简单人脸识别代码示例
# 源码如下: #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv def detect_object(image): '''检测图片,获取人脸在图片中的坐标''' grayscale = cv.CreateImage((image.width, image.height), 8, 1) cv.CvtColor(image, grayscale, cv.CV_BGR2GR
-
Python进行特征提取的示例代码
#过滤式特征选择 #根据方差进行选择,方差越小,代表该属性识别能力很差,可以剔除 from sklearn.feature_selection import VarianceThreshold x=[[100,1,2,3], [100,4,5,6], [100,7,8,9], [101,11,12,13]] selector=VarianceThreshold(1) #方差阈值值, selector.fit(x) selector.variances_ #展现属性的方差 selector.tra
-
opencv调整图像亮度对比度的示例代码
图像处理 图像变换就是找到一个函数,把原始图像矩阵经过函数处理后,转换为目标图像矩阵. 可以分为两种方式,即像素级别的变换和区域级别的变换 Point operators (pixel transforms) Neighborhood (area-based) operators 像素级别的变换就相当于\(p_{after}(i,j) = f(p_{before}(i,j))\),即变换后的每个像素值都与变换前的同位置的像素值有个函数映射关系. 对比度和亮度改变 线性变换 最常用的是线性变换.即
-
Python OpenCV视频截取并保存实现代码
这篇文章主要介绍了Python OpenCV视频截取并保存实现代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在图像处理之前,我们需要对拿到手的数据进行筛选,对于视频,我们需要从中截取我们需要的一段或几段 整体思路比较简单,通过设定截取视频的起止时间(帧数),可以将该时间段内的图像保存为新的视频 直接上代码 """ [函数名称] 截取视频 [参数] 输入参数 视频文件名称 [详细介绍] 输入不同时间段 进行截取拼接 [创
-
python opencv肤色检测的实现示例
1 椭圆肤色检测模型 原理:将RGB图像转换到YCRCB空间,肤色像素点会聚集到一个椭圆区域.先定义一个椭圆模型,然后将每个RGB像素点转换到YCRCB空间比对是否再椭圆区域,是的话判断为皮肤. YCRCB颜色空间 椭圆模型 代码 def ellipse_detect(image): """ :param image: 图片路径 :return: None """ img = cv2.imread(image,cv2.IMREAD_COLOR)
-
Python OpenCV 图像平移的实现示例
每次学习新东西的时候,橡皮擦都是去海量检索,然后找到适合自己理解的部分. 再将其拼凑成一个小的系统,争取对该内容有初步理解. 今天这 1 个小时,核心要学习的是图像的平移,在电脑上随便打开一张图片,实现移动都非常简单,但是在代码中,出现了一些新的概念. 检索 OpenCV 图像平移相关资料时,碰到的第一个新概念是就是 仿射变换. 每次看到这样子的数学名字,必然心中一凉,做为一个数学小白,又要瑟瑟发抖了. 百度一下,看看百科中是如何介绍的. 看过上图中的一些相关简介之后,对于这个概念也并没有太深刻
随机推荐
- 小技巧处理div内容溢出
- PHP中遇到BOM、<feff>编码导致json_decode函数无法解析问题
- SQL Server误区30日谈 第19天 Truncate表的操作不会被记录到日志
- AngularJs ng-route路由详解及实例代码
- C_936.nls 系统文件丢失或损坏的解决方法
- 不用任何软件修改mac地址的图文方法
- VBS实现工作表按指定表头自动分表
- python中string模块各属性以及函数的用法介绍
- js实现键盘Enter键提交表单的方法
- windows下apache搭建php开发环境
- 3步搞定纯真IP数据导入到MySQL的方法详解
- Java concurrency之公平锁(二)_动力节点Java学院整理
- 详解Android自定义View--自定义柱状图
- Android控件PullRefreshViewGroup实现下拉刷新和上拉加载
- Java Scanner 类的使用小结
- jQuery实现动态生成年月日级联下拉列表示例
- C#中使用angular的方法步骤
- 解决vue 引入子组件报错的问题
- shell脚本实现监控某个进程意外停止后拉起进程
- 44条Java代码优化建议