Python标准库使用OrderedDict类的实例讲解

目标:创建一个字典,记录几对python词语,使用OrderedDict类来写,并按顺序输出。

写完报错:

[root@centos7 tmp]# python python_terms.py
 File "python_terms.py", line 9
  from name,language in python_terms.items():
       ^
SyntaxError: invalid syntax

代码如下:

from collections import OrderedDict
python_terms = OrderedDict()
python_terms['key'] = 'vlaue'
python_terms['if']  = 'match'
python_terms['from'] = 'import'
from name,language in python_terms.items():
  print("python have many terms " + name.title() +
    language.title() + '.')
~   

结果for循环的for写成from了……总是出现简单的错误。

最终,正确代码如下:

from collections import OrderedDict
python_terms = OrderedDict()
python_terms['key'] = 'vlaue'
python_terms['if']  = 'match'
python_terms['from'] = 'import'
for name,language in python_terms.items():
  print("python have many terms " + name.title() +
    " " + language.title() + '.')

第一行,从模块collections中导入OrderedDict类;

第二行,创建了OrderedDict类的一个实例,并将其存储到python_terms中,也就是创建了一个空字典;

第三至五行,为字典添加键值对;

最后,循环输出结果。

运行结果:

[root@centos7 tmp]# python python_terms.py
python have many terms Key Vlaue.
python have many terms If Match.
python have many terms From Import.

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对我们的支持。如果你想了解更多相关内容请查看下面相关链接

(0)

相关推荐

  • Python的collections模块中的OrderedDict有序字典

    如同这个数据结构的名称所说的那样,它记录了每个键值对添加的顺序. d = OrderedDict() d['a'] = 1 d['b'] = 10 d['c'] = 8 for letter in d: print letter 输出: a b c 如果初始化的时候同时传入多个参数,它们的顺序是随机的,不会按照位置顺序存储. >>> d = OrderedDict(a=1, b=2, c=3) OrderedDict([('a', 1), ('c', 3), ('b', 2)]) 除了和

  • python中OrderedDict的使用方法详解

    很多人认为python中的字典是无序的,因为它是按照hash来存储的,但是python中有个模块collections(英文,收集.集合),里面自带了一个子类 OrderedDict,实现了对字典对象中元素的排序.请看下面的实例: import collections print "Regular dictionary" d={} d['a']='A' d['b']='B' d['c']='C' for k,v in d.items(): print k,v print "\

  • Python Gitlab Api 使用方法

    简述 公司使用gitlab 来托管代码,日常代码merge request 以及其他管理是交给测试,鉴于操作需经常打开网页,重复且繁琐,所以交给Python 管理. 官方文档 安装 pip install python-gitlab 环境: py3 DEMO # -*- coding: utf-8 -*- __Author__ = "xiewm" __Date__ = '2017/12/26 13:46' """ gitlab 经常使用到的api DOC_

  • Python通过cv2读取多个USB摄像头

    本文实例为大家分享了Python通过cv2读取多个USB摄像头的具体代码,供大家参考,具体内容如下 通过 cv2 可以轻易的拿到摄像头数据. 比如以下几步就能打开摄像头显示,并通过 q 键保存图片 import cv2 capture = cv2.VideoCapture(0) # 打开自带的摄像头 if capture.isOpened(): # 以下两步设置显示屏的宽高 capture .set(cv2.CAP_PROP_FRAME_WIDTH, 640) capture .set(cv2.

  • python模块简介之有序字典(OrderedDict)

    有序字典-OrderedDict简介 示例 有序字典和通常字典类似,只是它可以记录元素插入其中的顺序,而一般字典是会以任意的顺序迭代的.参见下面的例子: import collections print 'Regular dictionary:' d = {} d['a'] = 'A' d['b'] = 'B' d['c'] = 'C' d['d'] = 'D' d['e'] = 'E' for k, v in d.items(): print k, v print '\nOrderedDict

  • face++与python实现人脸识别签到(考勤)功能

    项目实现利用face++开发一个课堂签到的软件,实现面向摄像头即可完成记录学号.姓名和时间的签到工作. 项目架构 项目使用场景 代码: 流程代码,主文件 #!usr/bin/ # -*- coding: utf-8 -*- import requests from json import JSONDecoder import csv import cv2 import time import tkinter as tk search_url = "https://api-cn.faceplusp

  • Python OrderedDict的使用案例解析

    这篇文章主要介绍了Python OrderedDict的使用案例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 很多人认为python中的字典是无序的,因为它是按照hash来存储的,但是python中有个模块collections(英文,收集.集合),里面自带了一个子类 OrderedDict,实现了对字典对象中元素的排序.请看下面的实例: import collections print "Regular dictionary" d

  • Python pandas实现excel工作表合并功能详解

    import os,pandas as pd,re #1.获取文件夹下要合并的文件名 dirpath = '文件夹地址' #工作表3特殊处理 需要开始下标和结束下标 begin = 231 end = 238 excel_names = os.listdir(dirpath) #2.获取文件内容 sheet_1_merge = [] sheet_2_merge = [] sheet_3_merge = pd.DataFrame([0,0,0,0,0,0,0]) for excel_name in

  • Python标准库使用OrderedDict类的实例讲解

    目标:创建一个字典,记录几对python词语,使用OrderedDict类来写,并按顺序输出. 写完报错: [root@centos7 tmp]# python python_terms.py File "python_terms.py", line 9 from name,language in python_terms.items(): ^ SyntaxError: invalid syntax 代码如下: from collections import OrderedDict p

  • Python标准库shutil用法实例详解

    本文实例讲述了Python标准库shutil用法.分享给大家供大家参考,具体如下: shutil模块提供了许多关于文件和文件集合的高级操作,特别提供了支持文件复制和删除的功能. 文件夹与文件操作 copyfileobj(fsrc, fdst, length=16*1024): 将fsrc文件内容复制至fdst文件,length为fsrc每次读取的长度,用做缓冲区大小 fsrc: 源文件 fdst: 复制至fdst文件 length: 缓冲区大小,即fsrc每次读取的长度 import shuti

  • python标准库sys和OS的函数使用方法与实例详解

    python标准库sys sys模块包括了一组非常实用的服务,内含很多函数方法和变量,用来处理Python运行时配置以及资源,从而可以与前当程序之外的系统环境交互,如:python解释器. sys模块的常见函数列表(import sys): 函数 说明 dir(sys) dir()方法查看模块中可用的方法.注意:如果是在编辑器,一定要注意要事先声明代码的编码方式,否则中文会乱码. sys.argv 实现从程序外部向程序传递参数 sys.exit([arg]) 程序中间的退出,arg=0为正常退出

  • python标准库OS模块函数列表与实例全解

    Python OS模块库详解 os就是"operating system"的缩写,顾名思义,os模块提供的就是各种 Python 程序与操作系统进行交互的接口.通过使用os模块,一方面可以方便地与操作系统进行交互,另一方面页可以极大增强代码的可移植性.如果该模块中相关功能出错,会抛出OSError异常或其子类异常. 注意 如果是读写文件的话,建议使用内置函数open(): 如果是路径相关的操作,建议使用os的子模块os.path: 如果要逐行读取多个文件,建议使用fileinput模块

  • Python标准库之sqlite3使用实例

    Python自带一个轻量级的关系型数据库SQLite.这一数据库使用SQL语言.SQLite作为后端数据库,可以搭配Python建网站,或者制作有数据存储需求的工具.SQLite还在其它领域有广泛的应用,比如HTML5和移动端.Python标准库中的sqlite3提供该数据库的接口. 我将创建一个简单的关系型数据库,为一个书店存储书的分类和价格.数据库中包含两个表:category用于记录分类,book用于记录某个书的信息.一本书归属于某一个分类,因此book有一个外键(foreign key)

  • 浅谈python标准库--functools.partial

    一.简单介绍: functools模块用于高阶函数:作用于或返回其他函数的函数.一般而言,任何可调用对象都可以作为本模块用途的函数来处理. functools.partial返回的是一个可调用的partial对象,使用方法是partial(func,*args,**kw),func是必须要传入的,而且至少需要一个args或是kw参数. 创建一个功能函数,实现三个数的相加,如果其中的一个或是多个参数不变,那么可以使用partial,实例化一个传入了add和12参数的对象,如上图所示,传入两个参数后

  • 一篇文章带你了解python标准库--random模块

    目录 1. random库基本介绍 2. random库概述 2.1 基本随机函数 2.2 扩展随机函数 3. 随机数函数的使用 4. 实例 总结 1. random库基本介绍 Random库时使用随机数的python标准库 伪随机数:采用梅森旋转算法生成的(伪)随机序列中的元素 Random库主要用于生成随机数 使用random库:import random 2. random库概述 Random库包含两类函数,常用共8个 基本随机函数:seed() random() 扩展随机函数:randi

  • Python标准库datetime之datetime模块用法分析详解

    目录 1.日期时间对象 2.创建日期时间对象 2.1.通过datetime.datetime.utcnow()创建 2.2.通过datetime.datetime.today()函数创建 2.3.通过datetime.datetime.now()创建 2.4.通过datetime.datetime()创建 2.5.查看创建的对象 2.6.查看datetime可以处理的最大的日期时间对象及最小的日期时间对象 3.日期事件对象的属性 4.日期时间对象转换为时间元组 5.将日期时间对象转化为公元历开始

  • Python标准库sys库常用功能详解

    目录 1.查看版本信息 2.四大实现详细信息 3.查看Python解释器的相关信息 3.设置python解释器信息 4.标准输入.输出和错误流 5.查看系统平台相关信息 6.其他 1.查看版本信息 # coding:utf-8 import sys # 获取 Python版本信息 print(sys.version) # 获取解释器中C的API版本 print(sys.api_version) # 获取Windows系统功能版本 print(sys.getwindowsversion()) #

  • python标准库学习之sys模块详解

    目录 前言 处理命令行参数 sys.exit(n) 退出程序,正常退出时exit(0) sys.version 获取Python解释程序的版本信息 sys.platform 返回操作系统平台名称 sys.stdin.readline()与input sys.stdout与print 总结 补充:sys 模块的实例 前言 sys模块是与python解释器交互的一个接口.sys 模块提供了许多函数和变量来处理 Python 运行时环境的不同部分. 处理命令行参数 在解释器启动后, argv 列表包含

随机推荐