Spark入门简介

SPARK

Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行框架,Spark,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。

Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。

Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。

尽管创建 Spark 是为了支持分布式数据集上的迭代作业,但是实际上它是对 Hadoop 的补充,可以在 Hadoop 文件系统中并行运行。通过名为 Mesos 的第三方集群框架可以支持此行为。Spark 由加州大学伯克利分校 AMP 实验室 (Algorithms, Machines, and People Lab) 开发,可用来构建大型的、低延迟的数据分析应用程序。

Apache Spark是专为大规模数据处理而设计的快速通用的计算引擎 。现在形成一个高速发展应用广泛的生态系统。

学习大数据的起点

Spark 主要有三个特点 :

首先,高级 API 剥离了对集群本身的关注,Spark 应用开发者可以专注于应用所要做的计算本身。

其次,Spark 很快,支持交互式计算和复杂算法。

最后,Spark 是一个通用引擎,可用它来完成各种各样的运算,包括 SQL 查询、文本处理、机器学习等,而在 Spark 出现之前,我们一般需要学习各种各样的引擎来分别处理这些需求。

性能特点

更快的速度

内存计算下,Spark 比 Hadoop 快100倍。

易用性

Spark 提供了80多个高级运算符。

通用性

Spark 提供了大量的库,包括SQL、DataFrames、MLlib、GraphX、Spark Streaming。 开发者可以在同一个应用程序中无缝组合使用这些库。

支持多种资源管理器

Spark 支持 Hadoop YARN,Apache Mesos,及其自带的独立集群管理器

Spark生态系统

Shark:Shark基本上就是在Spark的框架基础上提供和Hive一样的HiveQL命令接口,为了最大程度的保持和Hive的兼容性,Shark使用了Hive的API来实现query Parsing和 Logic Plan generation,最后的PhysicalPlan execution阶段用Spark代替HadoopMapReduce。通过配置Shark参数,Shark可以自动在内存中缓存特定的RDD,实现数据重用,进而加快特定数据集的检索。同时,Shark通过UDF用户自定义函数实现特定的数据分析学习算法,使得SQL数据查询和运算分析能结合在一起,最大化RDD的重复使用。

SparkR:SparkR是一个为R提供了轻量级的Spark前端的R包。 SparkR提供了一个分布式的data frame数据结构,解决了 R中的data frame只能在单机中使用的瓶颈,它和R中的data frame 一样支持许多操作,比如select,filter,aggregate等等。(类似dplyr包中的功能)这很好的解决了R的大数据级瓶颈问题。 SparkR也支持分布式的机器学习算法,比如使用MLib机器学习库。 SparkR为Spark引入了R语言社区的活力,吸引了大量的数据科学家开始在Spark平台上直接开始数据分析之旅。

基本原理

Spark Streaming:构建在Spark上处理Stream数据的框架,基本的原理是将Stream数据分成小的时间片断(几秒),以类似batch批量处理的方式来处理这小部分数据。Spark Streaming构建在Spark上,一方面是因为Spark的低延迟执行引擎(100ms+),虽然比不上专门的流式数据处理软件,也可以用于实时计算,另一方面相比基于Record的其它处理框架(如Storm),一部分窄依赖的RDD数据集可以从源数据重新计算达到容错处理目的。此外小批量处理的方式使得它可以同时兼容批量和实时数据处理的逻辑和算法。方便了一些需要历史数据和实时数据联合分析的特定应用场合。

计算方法

Bagel: Pregel on Spark,可以用Spark进行图计算,这是个非常有用的小项目。Bagel自带了一个例子,实现了Google的PageRank算法。

当下Spark已不止步于实时计算,目标直指通用大数据处理平台,而终止Shark,开启SparkSQL或许已经初见端倪。

近几年来,大数据机器学习和数据挖掘的并行化算法研究成为大数据领域一个较为重要的研究热点。早几年国内外研究者和业界比较关注的是在 Hadoop 平台上的并行化算法设计。然而, HadoopMapReduce 平台由于网络和磁盘读写开销大,难以高效地实现需要大量迭代计算的机器学习并行化算法。随着 UC Berkeley AMPLab 推出的新一代大数据平台 Spark 系统的出现和逐步发展成熟,近年来国内外开始关注在 Spark 平台上如何实现各种机器学习和数据挖掘并行化算法设计。为了方便一般应用领域的数据分析人员使用所熟悉的 R 语言在 Spark 平台上完成数据分析,Spark 提供了一个称为 SparkR 的编程接口,使得一般应用领域的数据分析人员可以在 R 语言的环境里方便地使用 Spark 的并行化编程接口和强大计算能力。

总结

以上就是本文关于Spark入门简介的全部内容,希望对大家有所帮助。欢迎各位参阅本站其他专题,感谢朋友们对我们的支持!

(0)

相关推荐

  • Spark的广播变量和累加器使用方法代码示例

    一.广播变量和累加器 通常情况下,当向Spark操作(如map,reduce)传递一个函数时,它会在一个远程集群节点上执行,它会使用函数中所有变量的副本.这些变量被复制到所有的机器上,远程机器上并没有被更新的变量会向驱动程序回传.在任务之间使用通用的,支持读写的共享变量是低效的.尽管如此,Spark提供了两种有限类型的共享变量,广播变量和累加器. 1.1 广播变量: 广播变量允许程序员将一个只读的变量缓存在每台机器上,而不用在任务之间传递变量.广播变量可被用于有效地给每个节点一个大输入数据集的副

  • Hadoop组件简介

    安装hbase 首先下载hbase的最新稳定版本 http://www.apache.org/dyn/closer.cgi/hbase/ 安装到本地目录中,我安装的是当前用户的hadoop/hbase中 tar -zxvf hbase-0.90.4.tar.gz 单机模式 修改配置文件 conf/hbase_env.sh 配置JDK的路径 修改conf/hbase-site.xml hbase.rootdir file:///home/${user.name}/hbase-tmp 完成后启动 b

  • 浅谈七种常见的Hadoop和Spark项目案例

    有一句古老的格言是这样说的,如果你向某人提供你的全部支持和金融支持去做一些不同的和创新的事情,他们最终却会做别人正在做的事情.如比较火爆的Hadoop.Spark和Storm,每个人都认为他们正在做一些与这些新的大数据技术相关的事情,但它不需要很长的时间遇到相同的模式.具体的实施可能有所不同,但根据我的经验,它们是最常见的七种项目. 项目一:数据整合 称之为"企业级数据中心"或"数据湖",这个想法是你有不同的数据源,你想对它们进行数据分析.这类项目包括从所有来源获得

  • 深入浅析Java Object Serialization与 Hadoop 序列化

    一,Java Object Serialization 1,什么是序列化(Serialization) 序列化是指将结构化对象转化为字节流以便在网络上传输或者写到磁盘永久存储的过程.反序列化指将字节流转回结构化对象的逆过程.简单的理解就是对象转换为字节流用来传输和保存,字节流转换为对象将对象恢复成原来的状态. 2,序列化(Serialization)的作用 (1)一种持久化机制,把的内存中的对象状态保存到一个文件中或者数据库. (2)一种通信机制,用套接字在网络上传送对象. (3)Java远程方

  • Spark自定义累加器的使用实例详解

    累加器(accumulator)是Spark中提供的一种分布式的变量机制,其原理类似于mapreduce,即分布式的改变,然后聚合这些改变.累加器的一个常见用途是在调试时对作业执行过程中的事件进行计数. 累加器简单使用 Spark内置的提供了Long和Double类型的累加器.下面是一个简单的使用示例,在这个例子中我们在过滤掉RDD中奇数的同时进行计数,最后计算剩下整数的和. val sparkConf = new SparkConf().setAppName("Test").setM

  • java 中Spark中将对象序列化存储到hdfs

    java 中Spark中将对象序列化存储到hdfs 摘要: Spark应用中经常会遇到这样一个需求: 需要将JAVA对象序列化并存储到HDFS, 尤其是利用MLlib计算出来的一些模型, 存储到hdfs以便模型可以反复利用. 下面的例子演示了Spark环境下从Hbase读取数据, 生成一个word2vec模型, 存储到hdfs. 废话不多说, 直接贴代码了. spark1.4 + hbase0.98 import org.apache.spark.storage.StorageLevel imp

  • 使用docker快速搭建Spark集群的方法教程

    前言 Spark 是 Berkeley 开发的分布式计算的框架,相对于 Hadoop 来说,Spark 可以缓存中间结果到内存而提高某些需要迭代的计算场景的效率,目前收到广泛关注.下面来一起看看使用docker快速搭建Spark集群的方法教程. 适用人群 正在使用spark的开发者 正在学习docker或者spark的开发者 准备工作 安装docker (可选)下载java和spark with hadoop Spark集群 Spark运行时架构图 如上图: Spark集群由以下两个部分组成 集

  • Java执行hadoop的基本操作实例代码

    Java执行hadoop的基本操作实例代码 向HDFS上传本地文件 public static void uploadInputFile(String localFile) throws IOException{ Configuration conf = new Configuration(); String hdfsPath = "hdfs://localhost:9000/"; String hdfsInput = "hdfs://localhost:9000/user/

  • Spark入门简介

    SPARK Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎.Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行框架,Spark,拥有Hadoop MapReduce所具有的优点:但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法. Spark 是一种与 Had

  • Android开发之InetAddress基础入门简介与源码实例

    最近在学习soket编程中,看到有需要获取到IP地址之类的需求,所以就去看了下如何获取到主机名的IP地址. 其实就是需要用到一个类InetAddress.他是在java.net包下面. InetAddress类的对象用于IP地址和域名,该类提供以下方法: getByName(String s):获得一个InetAddress 类的对象,该对象中含有主机的IP地址和域名,该对象用如下格式表示它包含的信息:www.sina.com.cn/202.108.37.40: String getHostNa

  • PostgreSQL入门简介

    PostgreSQL简介 PostgreSQL是一个免费的对象-关系型数据库服务器(ORDBMS),遵循灵活的开源协议BSD. PostgreSQL开发者将其念作post-gres-Q-L. PostgreSQL目前是世界上最先进的开源关系型数据库,支持丰富的数据类型(如JSON.JSONB.数组类型及二进制大对象)和自定义类型.提供了丰富的接口.很容易拓展它的功能,如可以在GIST框架下实现自己的索引类型等. PostgreSQL是完全的事务安全性数据库,完整地支持外键.视图.触发器和存储过程

  • Python-基础-入门 简介

    Python简介及入门 python为什么是python 选择自己喜欢的语言,这往往不容易,更多的是根据需求 话说,之前是java,大学用了三年+实习半年,后来入职做测试开发后,碰到了python 到最后,转python开发了 写起来快,缩进,不用打花括号,省手指,读起来舒服-.. 喜欢,貌似不需要什么太牛的理由,用着顺手舒服就行 什么语言之争,编辑器之战啥的,能忽略就忽略吧,能无视就无视吧,工具,够用,用这舒服就ok了,浪费口水精力争来争去图个啥呢 Life is short, I use p

  • 初识Spark入门

    1. Spark简介 2009年,Spark诞生于伯克利大学的AMPLab实验室.最出Spark只是一个实验性的项目,代码量非常少,属于轻量级的框架. 2010年,伯克利大学正式开源了Spark项目. 2013年6月,Spark成为了Apache基金会下的项目,进入高速发展期.第三方开发者贡献了大量的代码,活跃度非常高 2014年2月,Spark以飞快的速度称为了Apache的顶级项目,同时大数据公司Cloudera宣称加大Spark框架的投入来取代MapReduce 2014年4月,大数据公司

  • Python IDLE入门简介

    IDLE是Python软件包自带的一个集成开发环境,初学者可以利用它方便地创建.运行.测试和调试Python程序. 参考: pip和pygal的安装实例教程 Python(一)运行环境搭建 一.IDLE的安装 实际上,IDLE是跟Python一起安装的,不过要确保安装时选中了"Tcl/Tk"组件,准确地说,应该是不要取消该组件,因为默认时该组件是处于选中状态的. 二.IDLE的启动 安装Python后,我们可以从"开始"菜单→"所有程序"→&qu

  • Spark实现K-Means算法代码示例

    K-Means算法是一种基于距离的聚类算法,采用迭代的方法,计算出K个聚类中心,把若干个点聚成K类. MLlib实现K-Means算法的原理是,运行多个K-Means算法,每个称为run,返回最好的那个聚类的类簇中心.初始的类簇中心,可以是随机的,也可以是KMean||得来的,迭代达到一定的次数,或者所有run都收敛时,算法就结束. 用Spark实现K-Means算法,首先修改pom文件,引入机器学习MLlib包: <dependency> <groupId>org.apache.

  • SparkGraphx计算指定节点的N度关系节点源码

    直接上代码: package horizon.graphx.util import java.security.InvalidParameterException import horizon.graphx.util.CollectionUtil.CollectionHelper import org.apache.spark.graphx._ import org.apache.spark.rdd.RDD import org.apache.spark.storage.StorageLevel

  • laravel入门知识点整理

    laravel入门 简介 作为PHP最常用的框架之一,Laravel的框架目录布置得尤其清晰,适用于各种类型的项目开发.今天来记录下laravel入门需要熟悉的知识点. 1.根目录 其中,public/index.php是项目的入口文件 2.配置 1)config目录 该文件夹下面,包含的是各种配置文件.包括mysql数据库连接信息,redis,自定义的配置文件信息等等 2).env文件 用以存储一些依赖环境的变量,比如数据库配置,因为它不会被加入到版本库中, 所以还用以配置一些敏感信息:比如正

随机推荐