Python图像运算之图像锐化和边缘检测

目录
  • 一.图像锐化
    • 1.一阶微分算子
    • 2.二阶微分算子
  • 二.Roberts算子
  • 三.Prewitt算子
  • 四.总结

一.图像锐化

由于收集图像数据的器件或传输图像的通道存在一些质量缺陷,或者受其他外界因素的影响,使得图像存在模糊和有噪声的情况,从而影响到图像识别工作的开展。一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时图像边缘信息主要集中在其高频部分。这将导致原始图像在平滑处理之后,图像边缘和图像轮廓模糊的情况出现。为了减少这类不利效果的影响,就需要利用图像锐化技术,使图像的边缘变得清晰。

图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变得清晰,经过平滑的图像变得模糊的根本原因是图像受到了平均或积分运算,因此可以对其进行逆运算,从而使图像变得清晰。微分运算是求信号的变化率,具有较强高频分量作用。从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。但要注意能够进行锐化处理的图像必须有较高的性噪比,否则锐化后图像性噪比反而更低,从而使得噪声增加比信号还要多,因此一般是先去除或减轻噪声后再进行锐化处理。这时需要开展图像锐化和边缘检测处理,加强原图像的高频部分,锐化突出图像的边缘细节,改善图像的对比度,使模糊的图像变得更清晰。

图像锐化和边缘提取技术可以消除图像中的噪声,提取图像信息中用来表征图像的一些变量,为图像识别提供基础。通常使用灰度差分法对图像的边缘、轮廓进行处理,将其凸显。图像锐化的方法分为高通滤波和空域微分法,本章主要介绍Robert算子、Prewitt算子、Sobel算子、Laplacian算子、Scharr算子等[2-3]。

1.一阶微分算子

一阶微分算子一般借助空域微分算子通过卷积完成,但实际上数字图像处理中求导是利用差分近似微分来进行的。梯度对应一阶导数,梯度算子是一阶导数算子。对一个连续函数f(x,y),它在位置(x,y)梯度可表示为一个矢量:

梯度的模值为公式(2)所示。

梯度的方向在最大变化率方向上,梯度方向如公式(3)所示。

对于数字图像,导数可以用差分来近似,则梯度可以表示为:

在实际中常用区域模板卷积来近似计算,对水平方向和垂直方向各用一个模板,再通过两个模板组合起来构成一个梯度算子。根据模板的大小,其中元素值的不同,可以提出多种模板,构成不同的检测算子,后文中将对各种算子进行详细介绍。

由梯度的计算可知,在图像灰度变化较大的边沿区域其梯度值大,在灰度变化平缓的区域梯度值较小,而在灰度均匀的区域其梯度值为零。根据得到的梯度值来返回像素值,如将梯度值大的像素设置成白色,梯度值小的设置为黑色,这样就可以将边缘提取出来了,或者是加强梯度值大的像素灰度值就可以突出细节了达到了锐化的目的。

2.二阶微分算子

二阶微分算子是求图像灰度变化导数的导数,对图像中灰度变化强烈的地方很敏感,从而可以突出图像的纹理结构。当图像灰度变化剧烈时,进行一阶微分则会形成一个局部的极值,对图像进行二阶微分则会形成一个过零点,并且在零点两边产生一个波峰和波谷,设定一个阈值检测到这个过零点,如图1所示。

这样做的好处有两个,一是二阶微分关心的是图像灰度的突变而不强调灰度缓慢变化的区域,对边缘的定位能力更强;二是Laplacian算子是各向同性的,即具有旋转不变性,在一阶微分里,是用|dx|+|dy|来近似一个点的梯度,当图像旋转一个角度时,这个值就会变化,但对于Laplacian算子来说,不管图像怎么旋转,得到的相应值是一样的。

想要确定过零点要以p为中心的一个3×3领域,p点为过零点意味着至少有两个相对的领域像素的符号不同。有四种要检测的情况:左/右、上/下、两个对角。如果g(x,y)的值与一个阈值比较,那么不仅要求相对领域的符号不同,数值差的绝对值也要超过这个阈值,这时p称为一个过零点像素。二阶微分的定义为:

二阶微分在恒定灰度区域的微分值为零,在灰度台阶或斜坡起点处微分值非零,沿着斜坡的微分值为零。与一阶微分算子相比较,一阶微分算子获得的边界是比较粗略的边界,反映的边界信息较少,但是所反映的边界比较清晰;二阶微分算子获得的边界是比较细致的边界,反映的边界信息包括了许多的细节信息,但是所反映的边界不是太清晰。

二.Roberts算子

Roberts算子又称为交叉微分算法,它是基于交叉差分的梯度算法,通过局部差分计算检测边缘线条。常用来处理具有陡峭的低噪声图像,当图像边缘接近于正45度或负45度时,该算法处理效果更理想,其缺点是对边缘的定位不太准确,提取的边缘线条较粗。

Roberts算子的模板分为水平方向和垂直方向,如公式(6)所示,从其模板可以看出,Roberts算子能较好的增强正负45度的图像边缘[4]。

如公式(7)所示,分别表示图像的水平方向和垂直方向的计算公式。

Roberts算子像素的最终计算公式如下:

在Python中,Roberts算子主要通过Numpy定义模板,再调用OpenCV的filter2D()函数实现边缘提取[3]。该函数主要是利用内核实现对图像的卷积运算,其函数原型如下所示:

dst = filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]])

  • – src表示输入图像
  • – dst表示输出的边缘图,其大小和通道数与输入图像相同
  • – ddepth表示目标图像所需的深度
  • – kernel表示卷积核,一个单通道浮点型矩阵
  • – anchor表示内核的基准点,其默认值为(-1,-1),位于中心位置
  • – delta表示在储存目标图像前可选的添加到像素的值,默认值为0
  • – borderType表示边框模式

在进行Roberts算子处理之后,还需要调用convertScaleAbs()函数计算绝对值,并将图像转换为8位图进行显示。其算法原型如下:

dst = convertScaleAbs(src[, dst[, alpha[, beta]]])

  • – src表示原数组
  • – dst表示输出数组,深度为8位
  • – alpha表示比例因子
  • – beta表示原数组元素按比例缩放后添加的值

最后调用addWeighted()函数计算水平方向和垂直方向的Roberts算子。其运行代码如下:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt

#读取图像
img = cv2.imread('luo.png')
lenna_img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

#灰度化处理图像
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#Roberts算子
kernelx = np.array([[-1,0],[0,1]], dtype=int)
kernely = np.array([[0,-1],[1,0]], dtype=int)
x = cv2.filter2D(grayImage, cv2.CV_16S, kernelx)
y = cv2.filter2D(grayImage, cv2.CV_16S, kernely)
#转uint8
absX = cv2.convertScaleAbs(x)
absY = cv2.convertScaleAbs(y)
Roberts = cv2.addWeighted(absX,0.5,absY,0.5,0)

#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']

#显示图形
titles = ['原始图像', 'Roberts算子']
images = [lenna_img, Roberts]
for i in range(2):
   plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray')
   plt.title(titles[i])
   plt.xticks([]),plt.yticks([])
plt.show()

其运行结果如图2所示,左边为原始图像,右边为Roberts算子图像锐化提取的边缘轮廓。

三.Prewitt算子

Prewitt是一种图像边缘检测的微分算子,其原理是利用特定区域内像素灰度值产生的差分实现边缘检测。由于Prewitt算子采用3×3模板对区域内的像素值进行计算,而Robert算子的模板为2×2,故Prewitt算子的边缘检测结果在水平方向和垂直方向均比Robert算子更加明显。Prewitt算子适合用来识别噪声较多、灰度渐变的图像,其计算公式如下所示。

具体的水平和垂直方向计算公式如下所示:

Prewitt算子像素的最终计算如公式(11)所示。

在Python中,Prewitt算子的实现过程与Roberts算子比较相似。通过Numpy定义模板,再调用OpenCV的filter2D()函数实现对图像的卷积运算,最终通过convertScaleAbs()和addWeighted()函数实现边缘提取,代码如下所示:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt

#读取图像
img = cv2.imread('luo.png')
lenna_img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

#灰度化处理图像
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#Prewitt算子
kernelx = np.array([[1,1,1],[0,0,0],[-1,-1,-1]],dtype=int)
kernely = np.array([[-1,0,1],[-1,0,1],[-1,0,1]],dtype=int)
x = cv2.filter2D(grayImage, cv2.CV_16S, kernelx)
y = cv2.filter2D(grayImage, cv2.CV_16S, kernely)
#转uint8
absX = cv2.convertScaleAbs(x)
absY = cv2.convertScaleAbs(y)
Prewitt = cv2.addWeighted(absX,0.5,absY,0.5,0)

#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']

#显示图形
titles = ['原始图像', 'Prewitt算子']
images = [lenna_img, Prewitt]
for i in range(2):
   plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray')
   plt.title(titles[i])
   plt.xticks([]),plt.yticks([])
plt.show()

最终运行结果如图3所示,左边为原始图像,右边为Prewitt算子图像锐化提取的边缘轮廓,其效果图的边缘检测结果在水平方向和垂直方向均比Robert算子更加明显。

四.总结

本文主要介绍图像锐化和边缘检测知识,详细讲解了Roberts算子和Prewitt算子,并通过小珞珞图像进行边缘轮廓提取。图像锐化和边缘提取技术可以消除图像中的噪声,提取图像信息中用来表征图像的一些变量,为图像识别提供基础。

以上就是Python图像运算之图像锐化和边缘检测的详细内容,更多关于Python图像锐化 边缘检测的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python运算符之Inplace运算符的使用教程

    Python 在其定义中提供了执行就地操作的方法,即使用“ operator ”模块在单个语句中进行赋值和计算. 例如, x += y is equivalent to x = operator.iadd(x, y) 一些重要的就地操作: 1. iadd()  :- 该函数用于分配和添加当前值.该操作执行“ a+=b ”操作.在不可变容器(例如字符串.数字和元组)的情况下不执行分配. 2. iconcat()  :- 该函数用于在第二个末尾连接一个字符串 . # 演示 iadd() 和 icon

  • Python中如何实现真正的按位取反运算

    目录 运算代码 实例说明 补充:Python的按位取反运算符的简单解析 总结 文章面向对象:对原理和编程不大有兴趣,只是需要用python实现一些运算功能的非计算机学生或从业者.大佬慎看防止血压拉高 运算代码 x=~x&0xFF num是一个不大于255的十进制正数(负数的我不需要,所以我也没研究) 计算结果也是十进制的数 &右边的0xFF会决定计算结果的比特位.如果要得到正确的计算结果,两边的数据比特位应该相同 例如1000对应的十六进制是0xFC17,16比特位的,这时候求反就应该改成

  • python中dot函数运算过程总结

    目录 基本简介 1. 向量内积 2. 矩阵乘法运算 2.1如下单个数的dot函数运算所示: 2.2如下一维数组的dot函数运算所示: 2.3如下二维数组的dot函数运算所示: 2.4如下二维数组与三维数组的dot函数运算: 2.5如下多维数组的dot函数运算所示: 总结 本文结合其他博主的一些介绍总结了dot函数运算过程 基本简介 dot函数为numpy库下的一个函数,主要用于矩阵的乘法运算,其中包括:向量内积.多维矩阵乘法和矩阵与向量的乘法. 1. 向量内积 向量其实是一维的矩阵,两个向量进行

  • python矩阵的基本运算及各种操作

    目录 一.Python 矩阵基本运算 二.python矩阵乘法 三.python矩阵转置 四.python求方阵的迹 五.python求逆矩阵/伴随矩阵 六.python方阵的行列式计算方法 七.python解多元一次方程 附:矩阵的高级操作 总结 一.Python 矩阵基本运算 引入 numpy 库 import numpy as np 1. python矩阵操作 1)使用 mat 函数创建一个 2X3矩阵 a = np.mat([[1, 2, 3], [4, 5, 6]]) 2)使用 sha

  • Python运算符优先级详细整理

    目录 前言 优先级概述 相同优先级 结合性 运算符优先级一览表 运算符优先级重点说明 结语 前言 虽然本文讲的是Python,但其实它也适用于所有的编程语言.因为这里面蕴含着编程之魂.所以本文标题没有显著的使用Python关键词.当然以前的文章用了Python关键词是因为当时我并没有想到这一点,很多内容也适用所有编程语言. 本文是运算符相关教程的最后一篇,将介绍运算符的最后一个汇总性的概念——运算符的优先级. 优先级概述 所谓优先级,是指优先计算的顺序.比如小学中我们学过的加减乘除基本四则运算,

  • 思考分析Python运算中 a+=b 和 a=a+b是否相等

    目录 如题,先上代码 a+=b a=a+b a不等于b + 操作调用__add__方法 如题,先上代码 a+=b >>> b = </code><code>[</code><code>0, 1, 2</code><code>]</code> <code>>>> a = b >>> a += [3] >>> b [0, 1, 2, 3] &g

  • Python图像运算之图像点运算与灰度化处理详解

    目录 一.图像点运算概念 二.图像灰度化处理 三.基于像素操作的图像灰度化处理 1.最大值灰度处理方法 2.平均灰度处理方法 3.加权平均灰度处理方法 四.总结 一.图像点运算概念 图像点运算(Point Operation)指对于一幅输入图像,将产生一幅输出图像,输出图像的每个像素点的灰度值由输入像素点决定.点运算实际上是灰度到灰度的映射过程,通过映射变换来达到增强或者减弱图像的灰度.还可以对图像进行求灰度直方图.线性变换.非线性变换以及图像骨架的提取.它与相邻的像素之间没有运算关系,是一种简

  • Python图像运算之图像灰度线性变换详解

    目录 一.灰度线性变换 二.图像灰度上移变换 三.图像对比度增强变换 四.图像对比度减弱变换 五.图像灰度反色变换 六.总结 一.灰度线性变换 图像的灰度线性变换是通过建立灰度映射来调整原始图像的灰度,从而改善图像的质量,凸显图像的细节,提高图像的对比度.灰度线性变换的计算公式如(12-1)所示: 该公式中DB表示灰度线性变换后的灰度值,DA表示变换前输入图像的灰度值,α和b为线性变换方程f(D)的参数,分别表示斜率和截距[1-4]. 当α=1,b=0时,保持原始图像 当α=1,b!=0时,图像

  • Python图像运算之图像灰度非线性变换详解

    目录 一.图像灰度非线性变换 二.图像灰度对数变换 三.图像灰度伽玛变换 四.总结 一.图像灰度非线性变换 原始图像的灰度值按照DB=DA×DA/255的公式进行非线性变换,其代码如下: # -*- coding: utf-8 -*- # By:Eastmount import cv2 import numpy as np import matplotlib.pyplot as plt #读取原始图像 img = cv2.imread('luo.png') #图像灰度转换 grayImage =

  • Python图像运算之图像阈值化处理详解

    目录 一.图像阈值化 二.固定阈值化处理 1.二进制阈值化 2.反二进制阈值化 3.截断阈值化 4.阈值化为0 5.反阈值化为0 三.自适应阈值化处理 四.总结 一.图像阈值化 图像阈值化(Binarization)旨在剔除掉图像中一些低于或高于一定值的像素,从而提取图像中的物体,将图像的背景和噪声区分开来. 灰度化处理后的图像中,每个像素都只有一个灰度值,其大小表示明暗程度.阈值化处理可以将图像中的像素划分为两类颜色,常见的阈值化算法如公式(1)所示: 当某个像素点的灰度Gray(i,j)小于

  • Python图像运算之图像灰度直方图对比详解

    目录 一.灰度增强直方图对比 二.灰度减弱直方图对比 三.图像反色直方图对比 四.图像对数变换直方图对比 五.图像阈值化处理直方图对比 六.总结 一.灰度增强直方图对比 图像灰度上移变换使用的表达式为: DB=DA+50 该算法将实现图像灰度值的上移,从而提升图像的亮度,结合直方图对比的实现代码如下所示. # -*- coding: utf-8 -*- # By:Eastmount import cv2 import numpy as np import matplotlib.pyplot as

  • Python图像运算之图像掩膜直方图和HS直方图详解

    目录 一.图像掩膜直方图 二.图像HS直方图 三.直方图判断白天黑夜 四.总结 一.图像掩膜直方图 如果要统计图像的某一部分直方图,就需要使用掩码(蒙板)来进行计算.假设将要统计的部分设置为白色,其余部分设置为黑色,然后使用该掩膜进行直方图绘制,其完整代码如下所示. # -*- coding: utf-8 -*- # By:Eastmount import cv2 import numpy as np import matplotlib.pyplot as plt import matplotl

  • Python图像锐化与边缘检测之Sobel与Laplacian算子详解

    目录 一.Sobel算子 二.Laplacian算子 三.总结 一.Sobel算子 Sobel算子是一种用于边缘检测的离散微分算子,它结合了高斯平滑和微分求导.该算子用于计算图像明暗程度近似值,根据图像边缘旁边明暗程度把该区域内超过某个数的特定点记为边缘.Sobel算子在Prewitt算子的基础上增加了权重的概念,认为相邻点的距离远近对当前像素点的影响是不同的,距离越近的像素点对应当前像素的影响越大,从而实现图像锐化并突出边缘轮廓[1-4]. Sobel算子的边缘定位更准确,常用于噪声较多.灰度

  • Python图像锐化与边缘检测之Scharr,Canny,LOG算子详解

    目录 一.Scharr算子 二.Cann算子 三.LOG算子 四.总结 一.Scharr算子 由于Sobel算子在计算相对较小的核的时候,其近似计算导数的精度比较低,比如一个3×3的Sobel算子,当梯度角度接近水平或垂直方向时,其不精确性就越发明显.Scharr算子同Sobel算子的速度一样快,但是准确率更高,尤其是计算较小核的情景,所以利用3×3滤波器实现图像边缘提取更推荐使用Scharr算子. Scharr算子又称为Scharr滤波器,也是计算x或y方向上的图像差分,在OpenCV中主要是

  • Python 计算机视觉编程进阶之OpenCV 图像锐化及边缘检测

    目录 前言 (1)图像锐化 (2)图像边缘检测 a. 图像边缘 b. 边缘检测 1. 一阶微分算算子.二阶微分算子 2. 读取图像信息 3. Sobel 算子 4. Laplacian 算子 5. Scharr 算子 6. Canny 算子 7. 总结 8. 参考论文 参考的一些文章以及论文我都会给大家分享出来 -- 链接就贴在原文,论文我上传到资源中去,大家可以免费下载学习,如果当天资源区找不到论文,那就等等,可能正在审核,审核完后就可以下载了.大家一起学习,一起进步!加油!! 前言 (1)图

  • Python OpenCV处理图像之滤镜和图像运算

    本文实例为大家分享了Python OpenCV处理图像之滤镜和图像运算的具体代码,供大家参考,具体内容如下 0x01. 滤镜 喜欢自拍的人肯定都知道滤镜了,下面代码尝试使用一些简单的滤镜,包括图片的平滑处理.灰度化.二值化等: import cv2.cv as cv image=cv.LoadImage('img/lena.jpg', cv.CV_LOAD_IMAGE_COLOR) #Load the image cv.ShowImage("Original", image) grey

随机推荐