Python NumPy教程之数据类型对象详解

每个 ndarray 都有一个关联的数据类型 (dtype) 对象。这个数据类型对象(dtype)告诉我们数组的布局。这意味着它为我们提供了以下信息:

  • 数据类型(整数、浮点数、Python 对象等)
  • 数据大小(字节数)
  • 数据的字节顺序(小端或大端)
  • 如果数据类型是子数组,它的形状和数据类型是什么。

ndarray 的值存储在缓冲区中,可以将其视为连续的内存字节块。所以这些字节将如何被解释由dtype对象给出。

构造数据类型(dtype)对象

数据类型对象是 numpy.dtype 类的一个实例,可以使用numpy.dtype.

参数:

obj: 要转换为数据类型对象的对象。

align : [bool, optional] 向字段添加填充以匹配 C 编译器为类似 C 结构输出的内容。

copy : [bool, optional] 制作数据类型对象的新副本。如果为 False,则结果可能只是对内置数据类型对象的引用。

# Python 程序创建数据类型对象
import numpy as np

# np.int16 被转换为数据类型对象。
print(np.dtype(np.int16))

输出:

int16

# Python 程序创建一个包含 32 位大端整数的数据类型对象
import numpy as np

# i4 表示大小为 4 字节的整数
# > 表示大端字节序和
# < 表示小端编码。
# dt 是一个 dtype 对象
dt = np.dtype('>i4')

print("Byte order is:",dt.byteorder)

print("Size is:", dt.itemsize)

print("Data type is:", dt.name)

输出:

Byte order is: >
Size is: 4
Name of data type is: int32

类型说明符(在上述情况下为 i4)可以采用不同的形式:

b1、i1、i2、i4、i8、u1、u2、u4、u8、f2、f4、f8、c8、c16、a(表示字节、整数、无符号整数、浮点数、指定字节长度的复数和定长字符串)

int8,...,uint8,...,float16, float32, float64, complex64, complex128(这次是大小)

注意:  dtype 与 type 不同。

# 用于区分类型和数据类型的 Python 程序。
import numpy as np

a = np.array([1])

print("type is: ",type(a))
print("dtype is: ",a.dtype)

输出:

type is:    
dtype is:  int32

具有结构化数组的数据类型对象

数据类型对象对于创建结构化数组很有用。结构化数组是包含不同类型数据的数组。可以借助字段访问结构化数组。

字段就像为对象指定名称。在结构化数组的情况下,dtype 对象也将是结构化的。

# 用于演示字段使用的 Python 程序
import numpy as np

# 一种结构化数据类型,包含一个 16 字符的字符串(在“name”字段中)和两个 64 位浮点数的子数组(在“grades”字段中)

dt = np.dtype([('name', np.unicode_, 16),
               ('grades', np.float64, (2,))])

# 具有字段等级的对象的数据类型
print(dt['grades'])

# 具有字段名称的对象的数据类型
print(dt['name'])

输出:

('<f8', (2,))

# Python 程序演示了数据类型对象与结构化数组的使用。
import numpy as np

dt = np.dtype([('name', np.unicode_, 16),
               ('grades', np.float64, (2,))])

# x 是一个包含学生姓名和分数的结构化数组。
# 学生姓名的数据类型是np.unicode_,分数的数据类型是np.float(64)
x = np.array([('Sarah', (8.0, 7.0)),
              ('John', (6.0, 7.0))], dtype=dt)

print(x[1])

print("Grades of John are: ", x[1]['grades'])
print("Names are: ", x['name'])

输出:

('John', [ 6.,  7.])
Grades of John are:  [ 6.  7.]
Names are:  ['Sarah' 'John']

到此这篇关于Python NumPy教程之数据类型对象详解的文章就介绍到这了,更多相关Python NumPy数据类型对象内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • NumPy-ndarray 的数据类型用法说明

    ndarray 的数据类型 数据类型,即 dtype ,也是一个特殊的对象, 它包含了ndarray需要为某一种类型数据所申明的内存块信息(也成为了元数据,即表示数据的数据) dtype是NumPy能够与琪他系统数据灵活交互的原因.通常,其他系统提供一个硬盘或内存与数据的对应关系,使得利用C或Fortran等底层语言读写数据变得十分方便. 名称 描述 bool_ 布尔型数据类型(True 或者 False) int_ 默认的整数类型(类似于 C 语言中的 long,int32 或 int64)

  • Numpy数据类型转换astype,dtype的方法

    1.查看数据类型 In [11]: arr = np.array([1,2,3,4,5]) In [12]: arr Out[12]: array([1, 2, 3, 4, 5]) // 该命令查看数据类型 In [13]: arr.dtype Out[13]: dtype('int64') In [14]: float_arr = arr.astype(np.float64) // 该命令查看数据类型 In [15]: float_arr.dtype Out[15]: dtype('float

  • numpy数据类型dtype转换实现

    这篇文章我们玩玩numpy的数值数据类型转换 导入numpy >>> import numpy as np 一.随便玩玩 生成一个浮点数组 >>> a = np.random.random(4) 看看信息 >>> a array([ 0.0945377 , 0.52199916, 0.62490646, 0.21260126]) >>> a.dtype dtype('float64') >>> a.shape (4,

  • 详解numpy矩阵的创建与数据类型

    Numpy是python常用的一个类库,在python的使用中及其常见,广泛用在矩阵的计算中,numpy对矩阵的操作与纯python比起来速度有极大的差距. 一. 构造矩阵 矩阵的构造可以有多种方法: 1.使用python中的方法构造矩阵 - 生成一维矩阵 # 使用python自带的range()方法生成一个矩阵 a = list(range(100))#range()产生从0-99的一个列表 print(a) - 生成二维及多维矩阵 # 使用python自带的range()方法生成一个矩阵 a

  • 关于Numpy数据类型对象(dtype)使用详解

    常用方法 #记住引入numpy时要是用别名np,则所有的numpy字样都要替换 #查询数值类型 >>>type(float) dtype('float64') # 查询字符代码 >>> dtype('f') dtype('float32') >>> dtype('d') dtype('float64') # 查询双字符代码 >>> dtype('f8') dtype('float64') # 获取所有字符代码 >>>

  • Python NumPy教程之数据类型对象详解

    每个 ndarray 都有一个关联的数据类型 (dtype) 对象.这个数据类型对象(dtype)告诉我们数组的布局.这意味着它为我们提供了以下信息: 数据类型(整数.浮点数.Python 对象等) 数据大小(字节数) 数据的字节顺序(小端或大端) 如果数据类型是子数组,它的形状和数据类型是什么. ndarray 的值存储在缓冲区中,可以将其视为连续的内存字节块.所以这些字节将如何被解释由dtype对象给出. 构造数据类型(dtype)对象 数据类型对象是 numpy.dtype 类的一个实例,

  • Python NumPy教程之遍历数组详解

    NumPy 包包含一个迭代器对象numpy.nditer.它是一个高效的多维迭代器对象,使用它可以迭代数组.使用 Python 的标准迭代器接口访问数组的每个元素. # 用于遍历数组的 Python 程序 import numpy as geek # 使用排列方法创建数组 a = geek.arange(12) # 具有 3 行和 4 列的形状数组 a = a.reshape(3,4) print('Original array is:') print(a) print() print('Mod

  • Python NumPy教程之二元计算详解

    二元运算符作用于位,进行逐位运算.二元运算只是组合两个值以创建新值的规则. numpy.bitwise_and(): 此函数用于计算两个数组元素的按位与. 此函数计算输入数组中整数的底层二进制表示的按位与. 代码#1: # 解释 bitwise_and() 函数的 Python 程序 import numpy as geek in_num1 = 10 in_num2 = 11 print ("Input number1 : ", in_num1) print ("Input

  • Python入门教程之运算符重载详解

    目录 如何重载Python中的运算符 在 Python中重载比较运算符 重载相等和小于运算符 用于运算符重载的 Python 魔术方法或特殊函数 二元运算符 比较运算符 赋值运算符 一元运算符 运算符重载意味着赋予超出其预定义的操作含义的扩展含义.例如运算符 + 用于添加两个整数以及连接两个字符串和合并两个列表.这是可以实现的,因为 '+' 运算符被 int 类和 str 类重载.您可能已经注意到,相同的内置运算符或函数对不同类的对象显示不同的行为,这称为运算符重载. # Python 程序显示

  • Python Numpy,mask图像的生成详解

    什么是掩膜(mask) 在numpy中,有一个模块叫做ma,这个模块几乎复制了numpy里面的所有函数,当然底层里面都换成了对自己定义的新的数据类型MaskedArray的操作. 我们来看最基本的array定义. An array class with possibly masked values. Masked values of True exclude the corresponding element from any computation. MaskedArray是一个可能带有掩膜信

  • python进阶教程之动态类型详解

    动态类型(dynamic typing)是Python另一个重要的核心概念.我们之前说过,Python的变量(variable)不需要声明,而在赋值时,变量可以重新赋值为任意值.这些都与动态类型的概念相关. 动态类型 在我们接触的对象中,有一类特殊的对象,是用于存储数据的.常见的该类对象包括各种数字,字符串,表,词典.在C语言中,我们称这样一些数据结构为变量.而在Python中,这些是对象. 对象是储存在内存中的实体.但我们并不能直接接触到该对象.我们在程序中写的对象名,只是指向这一对象的引用(

  • Python NumPy 数组索引的示例详解

    目录 前言 1.访问数组元素 2.访问 2-D Arrays(数组) 3.访问 3-D Arrays(数组) 4.负索引 前言 NumPy(Numerical Python的缩写)是一个开源的Python科学计算库.使用NumPy,就可以很自然地使用数组和矩阵.NumPy包含很多实用的数学函数,涵盖线性代数运算.傅里叶变换和随机数生成等功能.本文主要介绍Python NumPy 数组索引及访问数组元素. 1.访问数组元素 数组索引与访问数组元素相同. 您可以通过引用其索引号来访问数组元素. Nu

  • Python Numpy 高效的运算工具详解

    目录 Numpy 介绍 优势 numpy常用属性 ndarray形状 二维数组 ndarray类型 创建ndarray时,指定其类型 基本操作 总结 Numpy 介绍 numpy num numerical 数值化 py python ndarray n 任意个 d dimension 维度 array 数组 n维 相同数组类型的集合 将数据组 转化为 ndarray类型 data = np.array(数组) import numpy as np data = np.array([[80,89

  • Python Django请求和响应对象详解

    目录 Django请求和响应对象 HttpRequest对象 HttpRequest常用属性 中间件设置的属性 QueryDict对象 QueryDict方法 HttpResponse对象 HttpResponse对象用法 HttpResponse对象属性 HttpResponse对象方法 HttpResponse子类 JsonResponse对象 总结 Django请求和响应对象 Django 使用请求和响应对象在系统中传递状态. 当一个页面被请求时,Django 会创建一个 HttpRequ

  • python基础中的文件对象详解

    目录 一.python读取和写入文件内容 二.文件对象的写入 三.实现文件内容的拷贝 四.通过文件对象cmd.exe对命令行工具进行复制 总结 一.python读取和写入文件内容 任务:在cmd默认登陆目录中建立一个命名为test.txt的文件并写入内容“welcome python” 打开文件的三个步骤 1.建立文件对象-打开冰箱门 2.读取文件-把大象拿出来 f = open("C:\\Users\\Administrator\\test.txt","rb")#

随机推荐