K-近邻算法的python实现代码分享
k-近邻算法概述:
所谓k-近邻算法KNN就是K-Nearest neighbors Algorithms的简称,它采用测量不同特征值之间的距离方法进行分类
用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。
k-近邻算法分析
优点:精度高、对异常值不敏感、无数据输入假定。
缺点:计算复杂度高、空间复杂度高。
适用数据范围:数值型和标称型
k-近邻算法工作原理:
它的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的的分类,作为新数据的分类。
k-近邻算法实现过程:
对未知类别属性的数据集中的每个点依次执行以下操作:
(1)计算已知类别数据集中的点与当前点之间的距离;
(2)按照距离递增次序排序;
(3)选取与当前点距离最小的k个点;
(4)确定前k个点所在类别的出现频率;
(5)返回前k个点出现频率最高的类别作为当前点的预测分类。
k-近邻算法python代码实现:
编辑kNN.py文件代码如下:
编辑完成后保存,linux下确保当前路径为存储kNN.py文件的位置,进入python开发环境开始测试:
上图给出了点[0,0]、[1,0.9]的测试输出分类结果分别为B、A。至此,我们已经构造完成了一个分类器,使用这个分类器可以完成很多分类任务。从这个实例出发,构造使用分类算法将会更加容易。
分类器测试评估:
为了测试分类器的效果,需要对分类器做出评估,我们可以通过大量的测试数据得到分类器的错误率——分类器给出错误结果的次数除以测试执行的总数。错误率是常用的评估方法,主要用于评估分类器在某个数据集上的执行效果。完美分类器的错误率为0,最差分类器的错误率是1.0,在这种情况下,分类器根本就无法找到一个正确答案。
结束语:
本文首先对kNN做了简单介绍,通过了解其工作原理和实现流程,并使用k-近邻算法构造了分类器。我们也可以检验分类器给出的答案是否符合我们的预期。此外,还可以对分类器做大量的测试,并以错误率来评估该分类器的分类效果。
以上就是本文关于K-近邻算法的python实现代码分享的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题。如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
相关推荐
-
Python语言描述KNN算法与Kd树
最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知样本的类别,以全部训练样本作为代表点,计算未知样本与所有训练样本的距离,并以最近邻者的类别作为决策未知样本类别的唯一依据.但是,最近邻算法明显是存在缺陷的,比如下面的例子:有一个未知形状(图中绿色的圆点),如何判断它是什么形状? 显然,最近邻算法的缺陷--对噪声数据过于敏感,为了解决这个问题,我们可
-
Python数据结构与算法之图的基本实现及迭代器实例详解
本文实例讲述了Python数据结构与算法之图的基本实现及迭代器.分享给大家供大家参考,具体如下: 这篇文章参考自<复杂性思考>一书的第二章,并给出这一章节里我的习题解答. (这书不到120页纸,要卖50块!!,一开始以为很厚的样子,拿回来一看,尼玛.....代码很少,给点提示,然后让读者自己思考怎么实现) 先定义顶点和边 class Vertex(object): def __init__(self, label=''): self.label = label def __repr__(sel
-
Python排序搜索基本算法之选择排序实例分析
本文实例讲述了Python排序搜索基本算法之选择排序.分享给大家供大家参考,具体如下: 选择排序就是第n次把序列中最小的元素排在第n的位置上,一旦排好就是该元素的绝对位置.代码如下: # coding:utf-8 def selectionSort(seq): length=len(seq) for i in range(length): mini=min(seq[i:]) if seq[i]>mini: j=seq.index(mini,i) seq[i],seq[j]=seq[j],seq[
-
Python排序搜索基本算法之插入排序实例分析
本文实例讲述了Python排序搜索基本算法之插入排序.分享给大家供大家参考,具体如下: 插入排序生活中非常常见,打扑克的时候人的本能就在用插入排序:把抽到的一张插入到手上牌的正确位置上.有两种插入排序方法,一种基于比较,另一种基于交换.代码如下: 1.基于比较的插入排序: # coding:utf-8 def insertionSort(seq): length=len(seq) for i in range(1,length): tmp=seq[i] for j in range(i,0,-1
-
Python数据结构与算法之二叉树结构定义与遍历方法详解
本文实例讲述了Python数据结构与算法之二叉树结构定义与遍历方法.分享给大家供大家参考,具体如下: 先序遍历,中序遍历,后序遍历 ,区别在于三条核心语句的位置 层序遍历 采用队列的遍历操作第一次访问根,在访问根的左孩子,接着访问根的有孩子,然后下一层 自左向右一一访问同层的结点 # 先序遍历 # 访问结点,遍历左子树,如果左子树为空,则遍历右子树, # 如果右子树为空,则向上走到一个可以向右走的结点,继续该过程 preorder(t): if t: print t.value preorde
-
Python使用三种方法实现PCA算法
主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域.它的主要作用是对高维数据进行降维.PCA把原先的n个特征用数目更少的k个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关.关于PCA的更多介绍,请参考:https://en.wikipedia.org/wiki/Principal_component_analysis. 主成分分析(PCA) vs 多元判别式分析(MD
-
python中Apriori算法实现讲解
本文主要给大家讲解了Apriori算法的基础知识以及Apriori算法python中的实现过程,以下是所有内容: 1. Apriori算法简介 Apriori算法是挖掘布尔关联规则频繁项集的算法.Apriori算法利用频繁项集性质的先验知识,通过逐层搜索的迭代方法,即将K-项集用于探察(k+1)项集,来穷尽数据集中的所有频繁项集.先找到频繁项集1-项集集合L1, 然后用L1找到频繁2-项集集合L2,接着用L2找L3,知道找不到频繁K-项集,找到每个Lk需要一次数据库扫描.注意:频繁项集的所有非空
-
Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例
本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法).分享给大家供大家参考,具体如下: # coding:utf-8 # Dijkstra算法--通过边实现松弛 # 指定一个点到其他各顶点的路径--单源最短路径 # 初始化图参数 G = {1:{1:0, 2:1, 3:12}, 2:{2:0, 3:9, 4:3}, 3:{3:0, 5:5}, 4:{3:4, 4:0, 5:13, 6:15}, 5:{5:0, 6:4}, 6:{6:0}} # 每次找到离源点最近的一个顶
-
K-近邻算法的python实现代码分享
k-近邻算法概述: 所谓k-近邻算法KNN就是K-Nearest neighbors Algorithms的简称,它采用测量不同特征值之间的距离方法进行分类 用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中. k-近邻算法分析 优点:精度高.对异常值不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高. 适用数据范围:数值型和标称型 k-
-
用python实现k近邻算法的示例代码
K近邻算法(或简称kNN)是易于理解和实现的算法,而且是你解决问题的强大工具. 什么是kNN kNN算法的模型就是整个训练数据集.当需要对一个未知数据实例进行预测时,kNN算法会在训练数据集中搜寻k个最相似实例.对k个最相似实例的属性进行归纳,将其作为对未知实例的预测. 相似性度量依赖于数据类型.对于实数,可以使用欧式距离来计算.其他类型的数据,如分类数据或二进制数据,可以用汉明距离. 对于回归问题,会返回k个最相似实例属性的平均值.对于分类问题,会返回k个最相似实例属性出现最多的属性. kNN
-
python机器学习基础K近邻算法详解KNN
目录 一.k-近邻算法原理及API 1.k-近邻算法原理 2.k-近邻算法API 3.k-近邻算法特点 二.k-近邻算法案例分析案例信息概述 第一部分:处理数据 1.数据量缩小 2.处理时间 3.进一步处理时间 4.提取并构造时间特征 5.删除无用特征 6.签到数量少于3次的地点,删除 7.提取目标值y 8.数据分割 第二部分:特征工程 标准化 第三部分:进行算法流程 1.算法执行 2.预测结果 3.检验效果 一.k-近邻算法原理及API 1.k-近邻算法原理 如果一个样本在特征空间中的k个最相
-
python K近邻算法的kd树实现
k近邻算法的介绍 k近邻算法是一种基本的分类和回归方法,这里只实现分类的k近邻算法. k近邻算法的输入为实例的特征向量,对应特征空间的点:输出为实例的类别,可以取多类. k近邻算法不具有显式的学习过程,实际上k近邻算法是利用训练数据集对特征向量空间进行划分.将划分的空间模型作为其分类模型. k近邻算法的三要素 k值的选择:即分类决策时选择k个最近邻实例: 距离度量:即预测实例点和训练实例点间的距离,一般使用L2距离即欧氏距离: 分类决策规则. 下面对三要素进行一下说明: 1.欧氏距离即欧几里得距
-
k-means 聚类算法与Python实现代码
k-means 聚类算法思想先随机选择k个聚类中心,把集合里的元素与最近的聚类中心聚为一类,得到一次聚类,再把每一个类的均值作为新的聚类中心重新聚类,迭代n次得到最终结果分步解析 一.初始化聚类中心 首先随机选择集合里的一个元素作为第一个聚类中心放入容器,选择距离第一个聚类中心最远的一个元素作为第二个聚类中心放入容器,第三.四...N个同理,为了优化可以选择距离开方做为评判标准 二.迭代聚类 依次把集合里的元素与距离最近的聚类中心分为一类,放到对应该聚类中心的新的容器,一次聚类完成后求出新容器里
-
k均值算法c++语言实现代码
复制代码 代码如下: //k-mean.h #ifndef KMEAN_HEAD #define KMEAN_HEAD #include <vector> #include <map> //空间点的定义 class Node { public: double pos_x; double pos_y; double pos_z; Node() { pos_x = 0.0; pos
-
13个有趣又好玩的Python游戏代码分享
目录 1.吃金币 2.打乒乓 3.滑雪 4.并夕夕版飞机大战 5.打地鼠 6.小恐龙 7.消消乐 8.俄罗斯方块 9.贪吃蛇 10.24点小游戏 11.平衡木 12.外星人入侵 13.井字棋888 经常听到有朋友说,学习编程是一件非常枯燥无味的事情.其实,大家有没有认真想过,可能是我们的学习方法不对? 比方说,你有没有想过,可以通过打游戏来学编程? 今天我想跟大家分享几个Python小游戏,教你如何通过边打游戏边学编程! 1.吃金币 源码分享: import os import cfg impo
-
三个520专属Python表白代码分享
目录 No.1 No.2 No.3 快到 520 了,分享几段 520 专属 Python 代码,不多说了,下面直接上货. No.1 效果: 主要代码: import turtle turtle.speed(0) turtle.delay(10) turtle.penup() turtle.left(90) turtle.fd(200) turtle.pendown() turtle.right(90) turtle.fillcolor('red') turtle.begin_fill() tu
-
数据挖掘之Apriori算法详解和Python实现代码分享
关联规则挖掘(Association rule mining)是数据挖掘中最活跃的研究方法之一,可以用来发现事情之间的联系,最早是为了发现超市交易数据库中不同的商品之间的关系.(啤酒与尿布) 基本概念 1.支持度的定义:support(X-->Y) = |X交Y|/N=集合X与集合Y中的项在一条记录中同时出现的次数/数据记录的个数.例如:support({啤酒}-->{尿布}) = 啤酒和尿布同时出现的次数/数据记录数 = 3/5=60%. 2.自信度的定义:confidence(X-->
-
GO语言利用K近邻算法实现小说鉴黄
Usuage: go run kNN.go --file="data.txt" 关键是向量点的选择和阈值的判定 样本数据来自国家新闻出版总署发布通知公布的<40部淫秽色情网络小说名单> package main import ( "bufio" "flag" "fmt" "io" "log" "math" "os" "pa
随机推荐
- ionic+AngularJs实现获取验证码倒计时按钮
- 浅析php工厂模式
- Docker搭建前端Java的开发环境详解
- java中vector与hashtable操作实例分享
- python实现异步回调机制代码分享
- JAVA开发环境搭建教程
- 如何拒绝同一张表单被多次提交?
- 实现对Access数据库表重命名的一段代码
- javascript中innerText和innerHTML属性用法实例分析
- windows.vbs.FSO.文件操作信息.磁盘驱动信息.文件夹操作信息全集
- Auto Autorun.inf desktop.ini sxs.exe auto.exe类病毒的手动处理完全技巧
- 基于jQuery的弹出消息插件 DivAlert之旅(一)
- jQuery Dialog 打开时自动聚焦的解决方法(两种方法)
- 深入理解Javascript作用域与变量提升
- 入门简单的FLEX验证码一例
- vista hosts修改问题解决
- C++中关于委派(Delegates)的实现示例
- Android BadgeView红点更新信息提示示例代码
- 浅析C#的复制和克隆
- 基于DateTime.ParseExact方法的使用详解