Java 阻塞队列详解及简单使用

 Java 阻塞队列详解

概要:

在新增的Concurrent包中,BlockingQueue很好的解决了多线程中,如何高效安全“传输”数据的问题。通过这些高效并且线程安全的队列类,为我们快速搭建高质量的多线程程序带来极大的便利。本文详细介绍了BlockingQueue家庭中的所有成员,包括他们各自的功能以及常见使用场景。

认识BlockingQueue阻塞队列,顾名思义,首先它是一个队列,而一个队列在数据结构中所起的作用大致如下图所示:

从上图我们可以很清楚看到,通过一个共享的队列,可以使得数据由队列的一端输入,从另外一端输出;

常用的队列主要有以下两种:(当然通过不同的实现方式,还可以延伸出很多不同类型的队列,DelayQueue就是其中的一种)

1. 先进先出(FIFO):先插入的队列的元素也最先出队列,类似于排队的功能。从某种程度上来说这种队列也体现了一种公平性。

2. 后进先出(LIFO):后插入队列的元素最先出队列,这种队列优先处理最近发生的事件。

多线程环境中,通过队列可以很容易实现数据共享,比如经典的“生产者”和“消费者”模型中,通过队列可以很便利地实现两者之间的数据共享。假设我们有若干生产者线程,另外又有若干个消费者线程。如果生产者线程需要把准备好的数据共享给消费者线程,利用队列的方式来传递数据,就可以很方便地解决他们之间的数据共享问题。但如果生产者和消费者在某个时间段内,万一发生数据处理速度不匹配的情况呢?理想情况下,如果生产者产出数据的速度大于消费者消费的速度,并且当生产出来的数据累积到一定程度的时候,那么生产者必须暂停等待一下(阻塞生产者线程),以便等待消费者线程把累积的数据处理完毕,反之亦然。然而,在concurrent包发布以前,在多线程环境下,我们每个程序员都必须去自己控制这些细节,尤其还要兼顾效率和线程安全,而这会给我们的程序带来不小的复杂度。好在此时,强大的concurrent包横空出世了,而他也给我们带来了强大的BlockingQueue。(在多线程领域:所谓阻塞,在某些情况下会挂起线程(即阻塞),一旦条件满足,被挂起的线程又会自动被唤醒)

下面两幅图演示了BlockingQueue的两个常见阻塞场景: 

如上图所示:当队列中没有数据的情况下,消费者端的所有线程都会被自动阻塞(挂起),直到有数据放入队列。 

如上图所示:当队列中填满数据的情况下,生产者端的所有线程都会被自动阻塞(挂起),直到队列中有空的位置,线程被自动唤醒。

这也是我们在多线程环境下,为什么需要BlockingQueue的原因。作为BlockingQueue的使用者,我们再也不需要关心什么时候需要阻塞线程,什么时候需要唤醒线程,因为这一切BlockingQueue都给你一手包办了。既然BlockingQueue如此神通广大,让我们一起来见识下它的常用方法:

BlockingQueue的核心方法:

放入数据:

  offer(anObject):表示如果可能的话,将anObject加到BlockingQueue里,即如果BlockingQueue可以容纳, 则返回true,否则返回false 
  (本方法不阻塞当前执行方法的线程) 
  offer(E o, long timeout, TimeUnit unit),可以设定等待的时间,如果在指定的时间内,还不能往队列中加入BlockingQueue,则返回失败。 
  put(anObject):把anObject加到BlockingQueue里,如果BlockQueue没有空间,则调用此方法的线程被阻断直到BlockingQueue里面有空间再继续. 
获取数据: 
  poll(time):取走BlockingQueue里排在首位的对象,若不能立即取出,则可以等time参数规定的时间, 
    取不到时返回null; 
  poll(long timeout, TimeUnit unit):从BlockingQueue取出一个队首的对象,如果在指定时间内, 
    队列一旦有数据可取,则立即返回队列中的数据。否则知道时间超时还没有数据可取,返回失败。 
  take():取走BlockingQueue里排在首位的对象,若BlockingQueue为空,阻断进入等待状态直到 
    BlockingQueue有新的数据被加入; 
  drainTo():一次性从BlockingQueue获取所有可用的数据对象(还可以指定获取数据的个数), 
    通过该方法,可以提升获取数据效率;不需要多次分批加锁或释放锁。 
常见BlockingQueue 

在了解了BlockingQueue的基本功能后,让我们来看看BlockingQueue家庭大致有哪些成员?

BlockingQueue成员详细介绍 

1. ArrayBlockingQueue

基于数组的阻塞队列实现,在ArrayBlockingQueue内部,维护了一个定长数组,以便缓存队列中的数据对象,这是一个常用的阻塞队列,除了一个定长数组外,ArrayBlockingQueue内部还保存着两个整形变量,分别标识着队列的头部和尾部在数组中的位置。

  ArrayBlockingQueue在生产者放入数据和消费者获取数据,都是共用同一个锁对象,由此也意味着两者无法真正并行运行,这点尤其不同于LinkedBlockingQueue;按照实现原理来分析,ArrayBlockingQueue完全可以采用分离锁,从而实现生产者和消费者操作的完全并行运行。Doug Lea之所以没这样去做,也许是因为ArrayBlockingQueue的数据写入和获取操作已经足够轻巧,以至于引入独立的锁机制,除了给代码带来额外的复杂性外,其在性能上完全占不到任何便宜。 ArrayBlockingQueue和LinkedBlockingQueue间还有一个明显的不同之处在于,前者在插入或删除元素时不会产生或销毁任何额外的对象实例,而后者则会生成一个额外的Node对象。这在长时间内需要高效并发地处理大批量数据的系统中,其对于GC的影响还是存在一定的区别。而在创建ArrayBlockingQueue时,我们还可以控制对象的内部锁是否采用公平锁,默认采用非公平锁。

2. LinkedBlockingQueue

基于链表的阻塞队列,同ArrayListBlockingQueue类似,其内部也维持着一个数据缓冲队列(该队列由一个链表构成),当生产者往队列中放入一个数据时,队列会从生产者手中获取数据,并缓存在队列内部,而生产者立即返回;只有当队列缓冲区达到最大值缓存容量时(LinkedBlockingQueue可以通过构造函数指定该值),才会阻塞生产者队列,直到消费者从队列中消费掉一份数据,生产者线程会被唤醒,反之对于消费者这端的处理也基于同样的原理。而LinkedBlockingQueue之所以能够高效的处理并发数据,还因为其对于生产者端和消费者端分别采用了独立的锁来控制数据同步,这也意味着在高并发的情况下生产者和消费者可以并行地操作队列中的数据,以此来提高整个队列的并发性能。

作为开发者,我们需要注意的是,如果构造一个LinkedBlockingQueue对象,而没有指定其容量大小,LinkedBlockingQueue会默认一个类似无限大小的容量(Integer.MAX_VALUE),这样的话,如果生产者的速度一旦大于消费者的速度,也许还没有等到队列满阻塞产生,系统内存就有可能已被消耗殆尽了。

ArrayBlockingQueue和LinkedBlockingQueue是两个最普通也是最常用的阻塞队列,一般情况下,在处理多线程间的生产者消费者问题,使用这两个类足以。

下面的代码演示了如何使用BlockingQueue:

import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingQueue;

/**
* @author jackyuj
*/
public class BlockingQueueTest {

public static void main(String[] args) throws InterruptedException {
// 声明一个容量为10的缓存队列
BlockingQueue<String> queue = new LinkedBlockingQueue<String>(10);

Producer producer1 = new Producer(queue);
Producer producer2 = new Producer(queue);
Producer producer3 = new Producer(queue);
Consumer consumer = new Consumer(queue);

// 借助Executors
ExecutorService service = Executors.newCachedThreadPool();
// 启动线程
service.execute(producer1);
service.execute(producer2);
service.execute(producer3);
service.execute(consumer);

// 执行10s
Thread.sleep(10 * 1000);
producer1.stop();
producer2.stop();
producer3.stop();

Thread.sleep(2000);
// 退出Executor
service.shutdown();
}
}
import java.util.Random;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;

/**
* 消费者线程
*
* @author jackyuj
*/
public class Consumer implements Runnable {

public Consumer(BlockingQueue<String> queue) {
this.queue = queue;
}

public void run() {
System.out.println("启动消费者线程!");
Random r = new Random();
boolean isRunning = true;
try {
while (isRunning) {
System.out.println("正从队列获取数据...");
String data = queue.poll(2, TimeUnit.SECONDS);
if (null != data) {
System.out.println("拿到数据:" + data);
System.out.println("正在消费数据:" + data);
Thread.sleep(r.nextInt(DEFAULT_RANGE_FOR_SLEEP));
} else {
// 超过2s还没数据,认为所有生产线程都已经退出,自动退出消费线程。
isRunning = false;
}
}
} catch (InterruptedException e) {
e.printStackTrace();
Thread.currentThread().interrupt();
} finally {
System.out.println("退出消费者线程!");
}
}

private BlockingQueue<String> queue;
private static final int DEFAULT_RANGE_FOR_SLEEP = 1000;
}

import java.util.Random;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;

/**
* 生产者线程
*
* @author jackyuj
*/
public class Producer implements Runnable {

public Producer(BlockingQueue queue) {
this.queue = queue;
}

public void run() {
String data = null;
Random r = new Random();

System.out.println("启动生产者线程!");
try {
while (isRunning) {
System.out.println("正在生产数据...");
Thread.sleep(r.nextInt(DEFAULT_RANGE_FOR_SLEEP));

data = "data:" + count.incrementAndGet();
System.out.println("将数据:" + data + "放入队列...");
if (!queue.offer(data, 2, TimeUnit.SECONDS)) {
System.out.println("放入数据失败:" + data);
}
}
} catch (InterruptedException e) {
e.printStackTrace();
Thread.currentThread().interrupt();
} finally {
System.out.println("退出生产者线程!");
}
}

public void stop() {
isRunning = false;
}

private volatile boolean isRunning = true;
private BlockingQueue queue;
private static AtomicInteger count = new AtomicInteger();
private static final int DEFAULT_RANGE_FOR_SLEEP = 1000;

}

1.DelayQueue

DelayQueue中的元素只有当其指定的延迟时间到了,才能够从队列中获取到该元素。DelayQueue是一个没有大小限制的队列,因此往队列中插入数据的操作(生产者)永远不会被阻塞,而只有获取数据的操作(消费者)才会被阻塞。 
使用场景:

  DelayQueue使用场景较少,但都相当巧妙,常见的例子比如使用一个DelayQueue来管理一个超时未响应的连接队列。

2.PriorityBlockingQueue

基于优先级的阻塞队列(优先级的判断通过构造函数传入的Compator对象来决定),但需要注意的是PriorityBlockingQueue并不会阻塞数据生产者,而只会在没有可消费的数据时,阻塞数据的消费者。因此使用的时候要特别注意,生产者生产数据的速度绝对不能快于消费者消费数据的速度,否则时间一长,会最终耗尽所有的可用堆内存空间。在实现PriorityBlockingQueue时,内部控制线程同步的锁采用的是公平锁。

3.SynchronousQueue

一种无缓冲的等待队列,类似于无中介的直接交易,有点像原始社会中的生产者和消费者,生产者拿着产品去集市销售给产品的最终消费者,而消费者必须亲自去集市找到所要商品的直接生产者,如果一方没有找到合适的目标,那么对不起,大家都在集市等待。相对于有缓冲的BlockingQueue来说,少了一个中间经销商的环节(缓冲区),如果有经销商,生产者直接把产品批发给经销商,而无需在意经销商最终会将这些产品卖给那些消费者,由于经销商可以库存一部分商品,因此相对于直接交易模式,总体来说采用中间经销商的模式会吞吐量高一些(可以批量买卖);但另一方面,又因为经销商的引入,使得产品从生产者到消费者中间增加了额外的交易环节,单个产品的及时响应性能可能会降低。

  声明一个SynchronousQueue有两种不同的方式,它们之间有着不太一样的行为。公平模式和非公平模式的区别:

  如果采用公平模式:SynchronousQueue会采用公平锁,并配合一个FIFO队列来阻塞多余的生产者和消费者,从而体系整体的公平策略;

  但如果是非公平模式(SynchronousQueue默认):SynchronousQueue采用非公平锁,同时配合一个LIFO队列来管理多余的生产者和消费者,而后一种模式,如果生产者和消费者的处理速度有差距,则很容易出现饥渴的情况,即可能有某些生产者或者是消费者的数据永远都得不到处理。

小结 

  BlockingQueue不光实现了一个完整队列所具有的基本功能,同时在多线程环境下,他还自动管理了多线间的自动等待于唤醒功能,从而使得程序员可以忽略这些细节,关注更高级的功能。

感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

(0)

相关推荐

  • 详解Java阻塞队列(BlockingQueue)的实现原理

    阻塞队列 (BlockingQueue)是Java util.concurrent包下重要的数据结构,BlockingQueue提供了线程安全的队列访问方式:当阻塞队列进行插入数据时,如果队列已满,线程将会阻塞等待直到队列非满:从阻塞队列取数据时,如果队列已空,线程将会阻塞等待直到队列非空.并发包下很多高级同步类的实现都是基于BlockingQueue实现的. BlockingQueue 的操作方法 BlockingQueue 具有 4 组不同的方法用于插入.移除以及对队列中的元素进行检查.如果

  • 深入理解Java线程编程中的阻塞队列容器

    1. 什么是阻塞队列? 阻塞队列(BlockingQueue)是一个支持两个附加操作的队列.这两个附加的操作是:在队列为空时,获取元素的线程会等待队列变为非空.当队列满时,存储元素的线程会等待队列可用.阻塞队列常用于生产者和消费者的场景,生产者是往队列里添加元素的线程,消费者是从队列里拿元素的线程.阻塞队列就是生产者存放元素的容器,而消费者也只从容器里拿元素. 阻塞队列提供了四种处理方法: 抛出异常:是指当阻塞队列满时候,再往队列里插入元素,会抛出IllegalStateException("Q

  • Java中的阻塞队列详细介绍

    Java中的阻塞队列 1. 什么是阻塞队列? 阻塞队列(BlockingQueue)是一个支持两个附加操作的队列.这两个附加的操作是: 在队列为空时,获取元素的线程会等待队列变为非空. 当队列满时,存储元素的线程会等待队列可用. 阻塞队列常用于生产者和消费者的场景,生产者是往队列里添加元素的线程,消费者是从队列里拿元素的线程.阻塞队列就是生产者存放元素的容器,而消费者也只从容器里拿元素. 2.Java里的阻塞队列 JDK中提供了七个阻塞队列: ArrayBlockingQueue :一个由数组结

  • Java中使用阻塞队列控制线程集实例

    队列以一种先进先出的方式管理数据.如果你试图向一个已经满了的阻塞队列中添加一个元素,或是从一个空的阻塞队列中移除一个元素,将导致线程阻塞.在多线程进行合作时,阻塞队列是很有用的工具.工作者线程可以定期的把中间结果存到阻塞队列中.而其他工作者线程把中间结果取出并在将来修改它们.队列会自动平衡负载.如果第一个线程集运行的比第二个慢,则第二个线程集在等待结果时就会阻塞.如果第一个线程集运行的快,那么它将等待第二个线程集赶上来. 下面的程序展示了如何使用阻塞队列来控制线程集.程序在一个目录及它的所有子目

  • Java并发编程之阻塞队列详解

    1.什么是阻塞队列? 队列是一种数据结构,它有两个基本操作:在队列尾部加入一个元素,从队列头部移除一个元素.阻塞队里与普通的队列的区别在于,普通队列不会对当前线程产生阻塞,在面对类似消费者-生产者模型时,就必须额外的实现同步策略以及线程间唤醒策略.使用阻塞队列,就会对当前线程产生阻塞,当队列是空时,从队列中获取元素的操作将会被阻塞,当队列是满时,往队列里添加元素的操作也会被阻塞. 2.主要的阻塞队列及其方法 java.util.concurrent包下提供主要的几种阻塞队列,主要有以下几个: 1

  • 剖析Java中阻塞队列的实现原理及应用场景

    我们平时使用的一些常见队列都是非阻塞队列,比如PriorityQueue.LinkedList(LinkedList是双向链表,它实现了Dequeue接口). 使用非阻塞队列的时候有一个很大问题就是:它不会对当前线程产生阻塞,那么在面对类似消费者-生产者的模型时,就必须额外地实现同步策略以及线程间唤醒策略,这个实现起来就非常麻烦.但是有了阻塞队列就不一样了,它会对当前线程产生阻塞,比如一个线程从一个空的阻塞队列中取元素,此时线程会被阻塞直到阻塞队列中有了元素.当队列中有元素后,被阻塞的线程会自动

  • java 中 阻塞队列BlockingQueue详解及实例

    java 中 阻塞队列BlockingQueue详解及实例 BlockingQueue很好的解决了多线程中数据的传输,首先BlockingQueue是一个接口,它大致有四个实现类,这是一个很特殊的队列,如果BlockQueue是空的,从BlockingQueue取东西的操作将会被阻断进入等待状态,直到BlockingQueue进了东西才会被唤醒.同样,如果BlockingQueue是满的,任何试图往里存东西的操作也会被阻断进入等待状态,直到BlockingQueue里有空间才会被唤醒继续操作.

  • Java 阻塞队列详解及简单使用

     Java 阻塞队列详解 概要: 在新增的Concurrent包中,BlockingQueue很好的解决了多线程中,如何高效安全"传输"数据的问题.通过这些高效并且线程安全的队列类,为我们快速搭建高质量的多线程程序带来极大的便利.本文详细介绍了BlockingQueue家庭中的所有成员,包括他们各自的功能以及常见使用场景. 认识BlockingQueue阻塞队列,顾名思义,首先它是一个队列,而一个队列在数据结构中所起的作用大致如下图所示: 从上图我们可以很清楚看到,通过一个共享的队列,

  • Java多线程案例之阻塞队列详解

    目录 一.阻塞队列介绍 1.1阻塞队列特性 1.2阻塞队列的优点 二.生产者消费者模型 2.1阻塞队列对生产者的优化 三.标准库中的阻塞队列 3.1Java提供阻塞队列实现的标准类 3.2Blockingqueue基本使用 四.阻塞队列实现 4.1阻塞队列的代码实现 4.2阻塞队列搭配生产者与消费者的代码实现 一.阻塞队列介绍 1.1阻塞队列特性 阻塞队列特性: 一.安全性 二.产生阻塞效果 阻塞队列是一种特殊的队列. 也遵守 “先进先出” 的原则.阻塞队列能是一种线程安全的数据结构, 并且具有

  • java this 用法详解及简单实例

    java this 用法详解 用类名定义一个变量的时候,定义的只是一个引用,外面可以通过这个引用来访问这个类里面的属性和方法. 那们类里面是够也应该有一个引用来访问自己的属性和方法纳? 呵呵,JAVA提供了一个很好的东西,就是 this 对象,它可以在类里面来引用这个类的属性和方法.先来个简单的例子: public class ThisDemo { String name="Mick"; public void print(String name){ System.out.printl

  • Java clone方法详解及简单实例

      Java clone方法详解 什么是"clone"? 在实际编程过程中,我们常常要遇到这种情况:有一个对象A,在某一时刻A中已经包含了一些有效值,此时可能 会需要一个和A完全相同新对象B,并且此后对B任何改动都不会影响到A中的值,也就是说,A与B是两个独立的对象,但B的初始值是由A对象确定的.在 Java语言中,用简单的赋值语句是不能满足这种需求的.要满足这种需求虽然有很多途径,但实现clone()方法是其中最简单,也是最高效的手段. Java的所有类都默认继承java.lang.

  • Java 数据库连接池详解及简单实例

    Java 数据库连接池详解 数据库连接池的原理是: 连接池基本的思想是在系统初始化的时候,将数据库连接作为对象存储在内存中,当用户需要访问数据库时,并非建立一个新的连接,而是从连接池中取出一个已建立的空闲连接对象.使用完毕后,用户也并非将连接关闭,而是将连接放回连接池中,以供下一个请求访问使用.而连接的建立.断开都由连接池自身来管理.同时,还可以通过设置连接池的参数来控制连接池中的初始连接数.连接的上下限数以及每个连接的最大使用次数.最大空闲时间等等.也可以通过其自身的管理机制来监视数据库连接的

  • 利用C++如何实现一个阻塞队列详解

    阻塞队列是多线程中常用的数据结构,对于实现多线程之间的数据交换.同步等有很大作用. 阻塞队列常用于生产者和消费者的场景,生产者是向队列里添加元素的线程,消费者是从队列里取元素的线程.简而言之,阻塞队列是生产者用来存放元素.消费者获取元素的容器. 考虑下,这样一个多线程模型,程序有一个主线程 master 和一些 worker 线程,master 线程负责接收到数据,给 worker 线程分配数据,worker 线程取得一个任务后便可以开始工作,如果没有任务便阻塞住,节约 cpu 资源. mast

  • java 实例化类详解及简单实例

     Java 实例化类的方法 Java中,类的实例化方法有四种途径: 1)使用new操作符 2)调用Class对象的newInstance()方法 3)调用clone()方法,对现有实例的拷贝 4)通过ObjectInputStream的readObject()方法反序列化类 1.ClassInstance.java import java.io.*; class ClassInstance implements Cloneable, Serializable { private String s

  • java 多线程死锁详解及简单实例

    java 多线程死锁 相信有过多线程编程经验的朋友,都吃过死锁的苦.除非你不使用多线程,否则死锁的可能性会一直存在.为什么会出现死锁呢?我想原因主要有下面几个方面: (1)个人使用锁的经验差异     (2)模块使用锁的差异     (3)版本之间的差异     (4)分支之间的差异     (5)修改代码和重构代码带来的差异 不管什么原因,死锁的危机都是存在的.那么,通常出现的死锁都有哪些呢?我们可以一个一个看过来,     (1)忘记释放锁 void data_process() { Ent

  • java Spring AOP详解及简单实例

    一.什么是AOP AOP(Aspect Oriented Programming)面向切面编程不同于OOP(Object Oriented Programming)面向对象编程,AOP是将程序的运行看成一个流程切面,其中可以在切面中的点嵌入程序. 举个例子,有一个People类,也有一个Servant仆人类,在People吃饭之前,Servant会准备饭,在People吃完饭之后,Servant会进行打扫,这就是典型的面向切面编程. 其流程图为: 二.Spring AOP实现: 1.People

随机推荐