浅谈Java并发 J.U.C之AQS:CLH同步队列

CLH同步队列是一个FIFO双向队列,AQS依赖它来完成同步状态的管理,当前线程如果获取同步状态失败时,AQS则会将当前线程已经等待状态等信息构造成一个节点(Node)并将其加入到CLH同步队列,同时会阻塞当前线程,当同步状态释放时,会把首节点唤醒(公平锁),使其再次尝试获取同步状态。

在CLH同步队列中,一个节点表示一个线程,它保存着线程的引用(thread)、状态(waitStatus)、前驱节点(prev)、后继节点(next),其定义如下:

static final class Node {
  /** 共享 */
  static final Node SHARED = new Node();

  /** 独占 */
  static final Node EXCLUSIVE = null;

  /**
   * 因为超时或者中断,节点会被设置为取消状态,被取消的节点时不会参与到竞争中的,他会一直保持取消状态不会转变为其他状态;
   */
  static final int CANCELLED = 1;

  /**
   * 后继节点的线程处于等待状态,而当前节点的线程如果释放了同步状态或者被取消,将会通知后继节点,使后继节点的线程得以运行
   */
  static final int SIGNAL  = -1;

  /**
   * 节点在等待队列中,节点线程等待在Condition上,当其他线程对Condition调用了signal()后,改节点将会从等待队列中转移到同步队列中,加入到同步状态的获取中
   */
  static final int CONDITION = -2;

  /**
   * 表示下一次共享式同步状态获取将会无条件地传播下去
   */
  static final int PROPAGATE = -3;

  /** 等待状态 */
  volatile int waitStatus;

  /** 前驱节点 */
  volatile Node prev;

  /** 后继节点 */
  volatile Node next;

  /** 获取同步状态的线程 */
  volatile Thread thread;

  Node nextWaiter;

  final boolean isShared() {
    return nextWaiter == SHARED;
  }

  final Node predecessor() throws NullPointerException {
    Node p = prev;
    if (p == null)
      throw new NullPointerException();
    else
      return p;
  }

  Node() {
  }

  Node(Thread thread, Node mode) {
    this.nextWaiter = mode;
    this.thread = thread;
  }

  Node(Thread thread, int waitStatus) {
    this.waitStatus = waitStatus;
    this.thread = thread;
  }
}

CLH同步队列结构图如下:

入列
学了数据结构的我们,CLH队列入列是再简单不过了,无非就是tail指向新节点、新节点的prev指向当前最后的节点,当前最后一个节点的next指向当前节点。代码我们可以看看addWaiter(Node node)方法:

 private Node addWaiter(Node mode) {
    //新建Node
    Node node = new Node(Thread.currentThread(), mode);
    //快速尝试添加尾节点
    Node pred = tail;
    if (pred != null) {
      node.prev = pred;
      //CAS设置尾节点
      if (compareAndSetTail(pred, node)) {
        pred.next = node;
        return node;
      }
    }
    //多次尝试
    enq(node);
    return node;
  }

addWaiter(Node node)先通过快速尝试设置尾节点,如果失败,则调用enq(Node node)方法设置尾节点

  private Node enq(final Node node) {
    //多次尝试,直到成功为止
    for (;;) {
      Node t = tail;
      //tail不存在,设置为首节点
      if (t == null) {
        if (compareAndSetHead(new Node()))
          tail = head;
      } else {
        //设置为尾节点
        node.prev = t;
        if (compareAndSetTail(t, node)) {
          t.next = node;
          return t;
        }
      }
    }
  }

在上面代码中,两个方法都是通过一个CAS方法compareAndSetTail(Node expect, Node update)来设置尾节点,该方法可以确保节点是线程安全添加的。在enq(Node node)方法中,AQS通过“死循环”的方式来保证节点可以正确添加,只有成功添加后,当前线程才会从该方法返回,否则会一直执行下去。
过程图如下:

出列
CLH同步队列遵循FIFO,首节点的线程释放同步状态后,将会唤醒它的后继节点(next),而后继节点将会在获取同步状态成功时将自己设置为首节点,这个过程非常简单,head执行该节点并断开原首节点的next和当前节点的prev即可,注意在这个过程是不需要使用CAS来保证的,因为只有一个线程能够成功获取到同步状态。过程图如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们

(0)

相关推荐

  • java并发编程实例分析

    java并发编程是java程序设计语言的一块重点,在大部分的业务场景中都需要并发编程. 比如:并发的去处理http请求,这样就可以使得一台机器同时处理多个请求,大大提高业务的响应效率,从而使用用户体验更加流畅. java如何并发编程,要注意以下几个方面: 1.java语言中的多线程操作:创建和启动线程的几种方式. 2.共享变量的同步问题,要保证线程安全,辨别哪些变量是线程安全的.那些变量是线程不安全的,对于不安全的变量我们要想办法让其同步,一般也就是加锁. 3.线程锁:包括方法锁和synchro

  • 浅谈Java并发中的内存模型

    什么是JavaMemoryModel(JMM)? JMM通过构建一个统一的内存模型来屏蔽掉不同硬件平台和不同操作系统之间的差异,让Java开发者无需关注不同平台之间的差异,达到一次编译,随处运行的目的,这也正是Java的设计目的之一. CPU和内存 在讲JMM之前,我想先和大家聊聊硬件层面的东西.大家应该都知道执行运算操作的CPU本身是不具备存储能力的,它只负责根据指令对传递进来的数据做相应的运算,而数据存储这一任务则交给内存去完成.虽然内存的运行速度虽然比起硬盘快非常多,但是和3GHZ,4GH

  • java并发之原子操作类和非阻塞算法

    背景 近年来,在并发算法领域的大多数研究都侧重于非阻塞算法,这种算法用底层的原子机器指令(例如比较并发交换指令)代替锁来确保数据在并发访问中的一致性.非阻塞算法被广泛的用于在操作系统和JVM中实现线程/进程调度机制.垃圾回收机制以及锁和其他并发数据结构. 与基于锁的方案相比,非阻塞算法在设计和实现上都要复杂的多,但他们在可伸缩性和活跃性上却拥有巨大的优势,由于非阻塞算法可以使多个线程在竞争相同数据时不会发生阻塞,因此它能在粒度更细的层次上面进行协调,并且极大的减少调度开销.锁虽然Java语言锁定

  • 浅谈Java内存模型之happens-before

    happens-before原则非常重要,它是判断数据是否存在竞争.线程是否安全的主要依据,依靠这个原则,我们解决在并发环境下两操作之间是否可能存在冲突的所有问题.下面我们就一个简单的例子稍微了解下happens-before : i = 1;       //线程A执行 j = i ;      //线程B执行 j 是否等于1呢?假定线程A的操作(i = 1)happens-before线程B的操作(j = i),那么可以确定线程B执行后j = 1 一定成立,如果他们不存在happens-be

  • Java并发编程包中atomic的实现原理示例详解

    线程安全: 当多个线程访问某个类时,不管运行时环境采用何种调度方式或者这些进程将如何交替执行,并且在主调代码中不需要任何额外的同步或协调,这个类都能表现出正确的行为,那么就称这个类时线程安全的. 线程安全主要体现在以下三个方面: 原子性:提供了互斥访问,同一时刻只能有一个线程对它进行操作 可见性:一个线程对主内存的修改可以及时的被其他线程观察到 有序性:一个线程观察其他线程中的指令执行顺序,由于指令重排序的存在,该观察结果一般杂乱无序 引子 在多线程的场景中,我们需要保证数据安全,就会考虑同步的

  • Java并发编程之Condition源码分析(推荐)

    Condition介绍 上篇文章讲了ReentrantLock的加锁和释放锁的使用,这篇文章是对ReentrantLock的补充.ReentrantLock#newCondition()可以创建Condition,在ReentrantLock加锁过程中可以利用Condition阻塞当前线程并临时释放锁,待另外线程获取到锁并在逻辑后通知阻塞线程"激活".Condition常用在基于异步通信的同步机制实现中,比如dubbo中的请求和获取应答结果的实现. 常用方法 Condition中主要的

  • 浅谈Java并发 J.U.C之AQS:CLH同步队列

    CLH同步队列是一个FIFO双向队列,AQS依赖它来完成同步状态的管理,当前线程如果获取同步状态失败时,AQS则会将当前线程已经等待状态等信息构造成一个节点(Node)并将其加入到CLH同步队列,同时会阻塞当前线程,当同步状态释放时,会把首节点唤醒(公平锁),使其再次尝试获取同步状态. 在CLH同步队列中,一个节点表示一个线程,它保存着线程的引用(thread).状态(waitStatus).前驱节点(prev).后继节点(next),其定义如下: static final class Node

  • 浅谈Java并发中ReentrantLock锁应该怎么用

    目录 1.重入锁 说明 2.中断响应 说明 3.锁申请等待限时 tryLock(long, TimeUnit) tryLock() 4.公平锁 说明 源码(JDK8) 重入锁可以替代关键字 synchronized . 在 JDK5.0 的早期版本中,重入锁的性能远远优于关键字 synchronized , 但从 JDK6.0 开始, JDK 在关键字 synchronized 上做了大量的优化,使得两者的性能差距并不大. 重入锁使用 ReentrantLock 实现 1.重入锁 package

  • 浅谈Java并发编程之Lock锁和条件变量

    简单使用Lock锁 Java 5中引入了新的锁机制--java.util.concurrent.locks中的显式的互斥锁:Lock接口,它提供了比synchronized更加广泛的锁定操作.Lock接口有3个实现它的类:ReentrantLock.ReetrantReadWriteLock.ReadLock和ReetrantReadWriteLock.WriteLock,即重入锁.读锁和写锁.lock必须被显式地创建.锁定和释放,为了可以使用更多的功能,一般用ReentrantLock为其实例

  • 浅谈Java并发编程基础知识

    进程和线程 在并行程序中进程和线程是两个基本的运行单元,在Java并发编程中,并发主要核心在于线程 1. 进程 一个进程有其专属的运行环境,一个进程通常有一套完整.私有的运行时资源:尤其是每个进程都有其专属的内存空间. 通常情况下,进程等同于运行的程序或者应用,然而很多情况下用户看到的一个应用实际上可能是多个进程协作的.为了达到进程通信的目的,主要的操作系统都实现了Inter Process Communication(IPC)资源,例如pipe和sockets,IPC不仅能支持同一个系统中的进

  • 浅谈Java 并发的底层实现

    并发编程的目的是让程序运行更快,但是使用并发并不定会使得程序运行更快,只有当程序的并发数量达到一定的量级的时候才能体现并发编程的优势.所以谈并发编程在高并发量的时候才有意义.虽然目前还没有开发过高并发量的程序,但是学习并发是为了更好理解一些分布式架构.那么当程序的并发量不高,比如是单线程的程序,单线程的执行效率反而比多线程更高.这又是为什么呢?熟悉操作系统的应该知道,CPU是通过给每个线程分配时间片的方式实现多线程的.这样,当CPU从一个任务切换到另一个任务的时候,会保存上一个任务的状态,当执行

  • 浅谈Java安全编码之文件和共享目录的安全性

    目录 一.linux下的文件基本权限 二.linux文件的特殊权限 2.1.Set UID 和 Set GID 2.2.Sticky Bit 2.3.SUID/SGID/SBIT权限设置 三.文件隐藏属性 四.特殊文件 五.java中在共享目录中使用文件要注意的问题 六.安全目录 一.linux下的文件基本权限 chmod是linux下面的权限管理命令,我们可以通过chmod来对文件的权限进行修改. 普通文件的权限有三种,rwx分别是读,写和执行.再加上三个用户分组:owner,group,ot

  • 浅谈Java锁机制

    目录 1.悲观锁和乐观锁 2.悲观锁应用 3.乐观锁应用 4.CAS 5.手写一个自旋锁 1.悲观锁和乐观锁 我们可以将锁大体分为两类: 悲观锁 乐观锁 顾名思义,悲观锁总是假设最坏的情况,每次获取数据的时候都认为别的线程会修改,所以每次在拿数据的时候都会上锁,这样其它线程想要修改这个数据的时候都会被阻塞直到获取锁.比如MySQL数据库中的表锁.行锁.读锁.写锁等,Java中的synchronized和ReentrantLock等. 而乐观锁总是假设最好的情况,每次获取数据的时候都认为别的线程不

  • 浅谈Java多线程处理中Future的妙用(附源码)

    java 中Future是一个未来对象,里面保存这线程处理结果,它像一个提货凭证,拿着它你可以随时去提取结果.在两种情况下,离开Future几乎很难办.一种情况是拆分订单,比如你的应用收到一个批量订单,此时如果要求最快的处理订单,那么需要并发处理,并发的结果如果收集,这个问题如果自己去编程将非常繁琐,此时可以使用CompletionService解决这个问题.CompletionService将Future收集到一个队列里,可以按结果处理完成的先后顺序进队.另外一种情况是,如果你需要并发去查询一

  • 浅谈Java线程间通信之wait/notify

    Java中的wait/notify/notifyAll可用来实现线程间通信,是Object类的方法,这三个方法都是native方法,是平台相关的,常用来实现生产者/消费者模式.先来我们来看下相关定义: wait() :调用该方法的线程进入WATTING状态,只有等待另外线程的通知或中断才会返回,调用wait()方法后,会释放对象的锁. wait(long):超时等待最多long毫秒,如果没有通知就超时返回. notify() :通知一个在对象上等待的线程,使其从wait()方法返回,而返回的前提

随机推荐