对python dataframe逻辑取值的方法详解
我遇到的一个小需求,就是希望通过判断pandas dataframe中一列的值在两个条件范围(比如下面代码中所描述的逻辑,取小于u-3ε和大于u+3ε的值),然后取出dataframe中的所有符合条件的值,这个需求的解决与普通的iloc、loc、ix的方式不同,所以我想分享一下,希望可以帮到遇到这个困难的朋友们,下面是我的实例代码:
doc[~((doc.iloc[:,141:142]<(mean_value-3*std_value))&(doc.iloc[:,141:142]>(mean_value+3*std_value)))]
下面代码是去掉两端数据,保留中间数据
doc = doc[~((doc.iloc[:,141]>(mean_value+3*std_value))|(doc.iloc[:,141]<(mean_value-3*std_value)))]
data[(data.C>1)&(data.C<5)])
以上这篇对python dataframe逻辑取值的方法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
dataframe设置两个条件取值的实例
如下所示: >>> import pandas as pd >>> import numpy as np >>> from pandas import Series, DataFrame >>> df = DataFrame({'name':['a','a','b','b'],'classes':[1,2,3,4],'price':[11,22,33,44]}) >>> df classes name price 0
-
用pandas中的DataFrame时选取行或列的方法
如下所示: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是Series类型 data.w #选择表格
-
pandas.dataframe中根据条件获取元素所在的位置方法(索引)
在dataframe中根据一定的条件,得到符合要求的某行元素所在的位置. 代码如下所示: df = pd.DataFrame({'BoolCol': [1, 2, 3, 3, 4],'attr': [22, 33, 22, 44, 66]}, index=[10,20,30,40,50]) print(df) a = df[(df.BoolCol==3)&(df.attr==22)].index.tolist() print(a) df如下所示,以上通过选取"BoolCol"取
-
对pandas将dataframe中某列按照条件赋值的实例讲解
在数据处理过程中,经常会出现对某列批量做某些操作,比如dataframe df要对列名为"values"做大于等于30设置为1,小于30设置为0操作,可以这样使用dataframe的apply函数来实现, 具体实现代码如下: def fun(x): if x >= 30: return 1 else: return 0 values= feature['values'].apply(lambda x: fun(x)) 具体的逻辑可以修改fun函数来实现,但是按照某些条件选择列不是
-
对Python中DataFrame按照行遍历的方法
在做分类模型时候,需要在DataFrame中按照行获取数据以便于进行训练和测试. import pandas as pd dict=[[1,2,3,4,5,6],[2,3,4,5,6,7],[3,4,5,6,7,8],[4,5,6,7,8,9],[5,6,7,8,9,10]] data=pd.DataFrame(dict) print(data) for indexs in data.index: print(data.loc[indexs].values[0:-1]) 实验结果: /usr/b
-
对Python中DataFrame选择某列值为XX的行实例详解
如下所示: #-*-coding:utf8-*- import pandas as pd all_data=pd.read_csv("E:/协和问答系统/SenLiu/熵测试数据.csv") #获取某一列值为xx的行的候选列数据 print(all_data) feature_data=all_data.iloc[:,[0,-1]][all_data[all_data.T.index[0]]=='青年'] print(feature_data) 实验结果如下: "C:\Pro
-
浅谈DataFrame和SparkSql取值误区
1.DataFrame返回的不是对象. 2.DataFrame查出来的数据返回的是一个dataframe数据集. 3.DataFrame只有遇见Action的算子才能执行 4.SparkSql查出来的数据返回的是一个dataframe数据集. 原始数据 scala> val parquetDF = sqlContext.read.parquet("hdfs://hadoop14:9000/yuhui/parquet/part-r-00004.gz.parquet") df: or
-
对python dataframe逻辑取值的方法详解
我遇到的一个小需求,就是希望通过判断pandas dataframe中一列的值在两个条件范围(比如下面代码中所描述的逻辑,取小于u-3ε和大于u+3ε的值),然后取出dataframe中的所有符合条件的值,这个需求的解决与普通的iloc.loc.ix的方式不同,所以我想分享一下,希望可以帮到遇到这个困难的朋友们,下面是我的实例代码: doc[~((doc.iloc[:,141:142]<(mean_value-3*std_value))&(doc.iloc[:,141:142]>(me
-
对pandas中iloc,loc取数据差别及按条件取值的方法详解
Dataframe使用loc取某几行几列的数据: print(df.loc[0:4,['item_price_level','item_sales_level','item_collected_level','item_pv_level']]) 结果如下,取了index为0到4的五行四列数据. item_price_level item_sales_level item_collected_level item_pv_level 0 3 3 4 14 1 3 3 4 14 2 3 3 4 14
-
Python自动操作Excel文件的方法详解
目录 工具 读取Excel文件内容 写入Excel文件内容 Excel文件样式调整 设置表头的位置 设置单元格的宽高 总结 工具 python3.7 Pycharm Excel xlwt&xlrd 读取Excel文件内容 当前文件夹下有一个名为“股票数据.xlsx”的Excel文件,可以按照下列代码方式来操作它. import xlrd # 使用xlrd模块的open_workbook函数打开指定Excel文件并获得Book对象(工作簿) wb = xlrd.open_workbook('股票数
-
对Python闭包与延迟绑定的方法详解
Python闭包可能会在面试或者是工作中经常碰到,而提到Python的延迟绑定,肯定就离不开闭包的理解,今天总结下 关于闭包的概念以及一个延迟绑定的面试题. Python闭包 1.什么是闭包,闭包必须满足以下3个条件: 必须是一个嵌套的函数. 闭包必须返回嵌套函数. 嵌套函数必须引用一个外部的非全局的局部自由变量. 举个栗子 # 嵌套函数但不是闭包 def nested(): def nst(): print('i am nested func %s' % nested.__name__) ns
-
对python:threading.Thread类的使用方法详解
Python Thread类表示在单独的控制线程中运行的活动.有两种方法可以指定这种活动: 1.给构造函数传递回调对象 mthread=threading.Thread(target=xxxx,args=(xxxx)) mthread.start() 2.在子类中重写run() 方法 这里举个小例子: import threading, time class MyThread(threading.Thread): def __init__(self): threading.Thread.__in
-
Python实现提取音乐频谱的方法详解
目录 前言 1.准备 2.频谱展示 前言 你有没有经常好奇一些音乐软件的频谱特效是怎么做的,为什么做的这么好看?有没有想试试自己提取音乐频谱并可视化展现出来?今天,咱就结合上次的音乐剪辑操作: 3行Python代码实现剪辑音乐 来简单粗暴地可视化下面这首歌曲的频谱! 1.准备 开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,可以访问这篇文章:超详细Python安装指南 进行安装. Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(c
-
JavaScript学习笔记之取值函数getter与取值函数setter详解
目录 取值函数getter和存值函数setter 使用get与set函数有两个好处 取值函数getter和存值函数setter get和set是两个关键字,用于对某个属性设置存值函数和取值函数,拦截该属性的存取行为. 那么,这两个东西要怎么用呢?而且他们和我们的平日里写的业务又是怎么练习起来的呢? 首先,我们先看一段恩简单的代码: var person={ myname:'' } person.myname='lsh' console.log(person.myname); 相信大家一眼就看出来
-
Python利用Pandas进行数据分析的方法详解
目录 Series 代码 #1 代码 #2 代码#3 代码 #4 数据框 代码 #1 代码 #2 代码 #3 代码 #4 Pandas是最流行的用于数据分析的 Python 库.它提供高度优化的性能,后端源代码完全用C或Python编写. 我们可以通过以下方式分析 pandas 中的数据: 1.Series 2.数据帧 Series Series 是 pandas 中定义的一维(1-D)数组,可用于存储任何数据类型. 代码 #1 创建 Series # 创建 Series 的程序 # 导入 Pa
-
Python高效处理大文件的方法详解
目录 开始 处理文本 串行处理 多进程处理 并行处理 并行批量处理 将文件分割成批 运行并行批处理 tqdm 并发 结论 为了进行并行处理,我们将任务划分为子单元.它增加了程序处理的作业数量,减少了整体处理时间. 例如,如果你正在处理一个大的CSV文件,你想修改一个单列.我们将把数据以数组的形式输入函数,它将根据可用的进程数量,一次并行处理多个值.这些进程是基于你的处理器内核的数量. 在这篇文章中,我们将学习如何使用multiprocessing.joblib和tqdm Python包减少大文件
-
Python OpenCV实现图片预处理的方法详解
目录 一.图片预处理 1.1 边界填充(padding) 1.2 融合图片(mixup) 1.3 图像阈值 二.滤波器 2.1 均值滤波器 2.2 方框滤波器 2.3 高斯滤波器 2.4 中值滤波 2.5 所有滤波器按照上述顺序输出 一.图片预处理 1.1 边界填充(padding) 方法 : cv2.copyMakeBorder BORDER_REPLICATE:复制法,也就是复制最边缘像素. BORDER_REFLECT:反射法,对感兴趣的图像中的像素在两边进行复制例如:fedcba|abc
随机推荐
- Vue.js 2.0 移动端拍照压缩图片预览及上传实例
- 详解照片瀑布流效果(js,jquery分别实现与知识点总结)
- JavaScript实现找出数组中最长的连续数字序列
- JS截取字符串实例详解
- python分析网页上所有超链接的方法
- 在Apache服务器上同时运行多个Django程序的方法
- Mime类型与文件后缀对照表
- Linux命令集
- SqlServer应用之sys.dm_os_waiting_tasks 引发的疑问(下)
- js实现无缝滚动图(可控制当前滚动的方向)
- javascript 扫雷游戏
- node.js中的fs.readdir方法使用说明
- canvas实现图像放大镜
- 基于复选框demo(分享)
- C#仿密保卡功能的简单实现代码
- 利用C++如何覆盖或删除指定位置的文件内容
- Android开发之DialogFragment用法实例总结
- Kotlin整合Vertx开发Web应用
- 利用MySQL主从配置实现读写分离减轻数据库压力
- 跳一跳自动跳跃C#代码实现