Python基于opencv的图像压缩算法实例分析

本文实例讲述了Python基于opencv的图像压缩算法。分享给大家供大家参考,具体如下:

插值方法:

CV_INTER_NN - 最近邻插值,
CV_INTER_LINEAR - 双线性插值 (缺省使用)
CV_INTER_AREA - 使用象素关系重采样。当图像缩小时候,该方法可以避免波纹出现。当图像放大时,类似于 CV_INTER_NN 方法..
CV_INTER_CUBIC - 立方插值.

函数 cvResize 将图像 src 改变尺寸得到与 dst 同样大小。若设定 ROI,函数将按常规支持 ROI.

程序1:图像压缩(第一版)

# coding=utf-8
import time
time1 = time.time()
import cv2
image=cv2.imread("c:/1.jpg")
res = cv2.resize(image, (1280,960), interpolation=cv2.INTER_AREA)
# cv2.imshow('image', image)
# cv2.imshow('resize', res)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
cv2.imwrite("C:/5.jpg",res)
time2=time.time()
print u'总共耗时:' + str(time2 - time1) + 's'

4.19M—377k 压缩了11倍

程序2:图像压缩(第二版)

#-*-coding:utf-8-*-
#############设置编码################
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
###################导入计算机视觉库opencv和图像处理库PIL####################
from PIL import Image
from PIL import ImageEnhance
from PIL import ImageFilter
import cv2
import time
time1 = time.time()
####################读入图像###############################
image=cv2.imread("c:/pic//0.jpg")
####################双三次插值#############################
res = cv2.resize(image, (1280,960), interpolation=cv2.INTER_AREA)
####################写入图像########################
cv2.imwrite("C:/pic/101.jpg",res)
###########################图像对比度增强##################
imgE = Image.open("c:/pic/101.jpg")
imgEH = ImageEnhance.Contrast(imgE)
img1=imgEH.enhance(2.8)
########################图像转换为灰度图###############
gray = img1.convert("L")
gray.save("C:/pic/3.jpg")
##########################图像增强###########################
# 创建滤波器,使用不同的卷积核
gary2=gray.filter(ImageFilter.DETAIL)
gary2.save("C:/pic/2.jpg")
#############################图像点运算#################
gary3=gary2.point(lambda i:i*0.9)
gary3.save("C:/pic/4.jpg")
# img1.show("new_picture")
time2=time.time()
print u'总共耗时:' + str(time2 - time1) + 's'

4.17M–>290kb

程序3:函数版本

#-*-coding:utf-8-*-
#############设置编码################
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
############导入计算机视觉库opencv和图像处理库PIL####################
from PIL import Image
from PIL import ImageEnhance
from PIL import ImageFilter
import cv2
import time
time1 = time.time()
########################自定义图像压缩函数############################
def img_zip(path,filename1,filename2):
  image = cv2.imread(path+filename1)
  res = cv2.resize(image, (1280, 960), interpolation=cv2.INTER_AREA)
  cv2.imwrite(path+filename2, res)
  imgE = Image.open(path+filename2)
  imgEH = ImageEnhance.Contrast(imgE)
  img1 = imgEH.enhance(2.8)
  gray1 = img1.convert("L")
  gary2 = gray1.filter(ImageFilter.DETAIL)
  gary3 = gary2.point(lambda i: i * 0.9)
  gary3.save(path+filename2)
################################主函数##################################
if __name__ == '__main__':
  path=u"c:/pic/"
  filename1="0.jpg"
  filename2="1.jpg"
  img_zip(path,filename1,filename2)
  time2 = time.time()
  print u'总共耗时:' + str(time2 - time1) + 's'

更多关于Python相关内容可查看本站专题:《Python数学运算技巧总结》、《Python图片操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • 在Python下利用OpenCV来旋转图像的教程

    OpenCV是应用最被广泛的的开源视觉库.他允许你使用很少的代码来检测图片或视频中的人脸. 这里有一些互联网上的教程来阐述怎么在OpenCV中使用仿射变换(affine transform)旋转图片--他们并没有处理旋转一个图片里的矩形一般会把矩形的边角切掉这一问题,所以产生的图片需要修改.当正确的使用一点代码时,这是一点瑕疵. def rotate_about_center(src, angle, scale=1.): w = src.shape[1] h = src.shape[0] ran

  • Python OpenCV处理图像之图像像素点操作

    本文实例为大家分享了Python OpenCV图像像素点操作的具体代码,供大家参考,具体内容如下 0x01. 像素 有两种直接操作图片像素点的方法: 第一种办法就是将一张图片看成一个多维的list,例如对于一张图片im,想要操作第四行第四列的像素点就直接 im[3,3] 就可以获取到这个点的RGB值. 第二种就是使用 OpenCV 提供的 Get1D. Get2D 等函数. 推荐使用第一种办法吧,毕竟简单. 0x02. 获取行和列像素 有一下四个函数: cv.GetCol(im, 0): 返回第

  • python opencv 图像尺寸变换方法

    利用Python OpenCV中的 cv.Resize(源,目标,变换方法)就可以实现变换为想要的尺寸了 源文件:就不用说了 目标:你可以对图像进行倍数的放大和缩小 也可以直接的输入尺寸大小 变换的方法: CV_INTER_NN - 最近邻插值, CV_INTER_LINEAR - 双线性插值 (缺省使用) CV_INTER_AREA - 使用象素关系重采样.当图像缩小时候,该方法可以避免波纹出现.当图像放大时,类似于 CV_INTER_NN 方法.. CV_INTER_CUBIC - 立方插值

  • Python OpenCV处理图像之滤镜和图像运算

    本文实例为大家分享了Python OpenCV处理图像之滤镜和图像运算的具体代码,供大家参考,具体内容如下 0x01. 滤镜 喜欢自拍的人肯定都知道滤镜了,下面代码尝试使用一些简单的滤镜,包括图片的平滑处理.灰度化.二值化等: import cv2.cv as cv image=cv.LoadImage('img/lena.jpg', cv.CV_LOAD_IMAGE_COLOR) #Load the image cv.ShowImage("Original", image) grey

  • python-opencv在有噪音的情况下提取图像的轮廓实例

    对于一般的图像提取轮廓,介绍了一个很好的方法,但是对于有噪声的图像,并不能很好地捕获到目标物体. 比如对于我的鼠标,提取的轮廓效果并不好,因为噪声很多: 所以本文增加了去掉噪声的部分. 首先加载原始图像,并显示图像 img = cv2.imread("temp.jpg") #载入图像 h, w = img.shape[:2] #获取图像的高和宽 cv2.imshow("Origin", img) 然后进行低通滤波处理,进行降噪 blured = cv2.blur(i

  • Python基于opencv的图像压缩算法实例分析

    本文实例讲述了Python基于opencv的图像压缩算法.分享给大家供大家参考,具体如下: 插值方法: CV_INTER_NN - 最近邻插值, CV_INTER_LINEAR - 双线性插值 (缺省使用) CV_INTER_AREA - 使用象素关系重采样.当图像缩小时候,该方法可以避免波纹出现.当图像放大时,类似于 CV_INTER_NN 方法.. CV_INTER_CUBIC - 立方插值. 函数 cvResize 将图像 src 改变尺寸得到与 dst 同样大小.若设定 ROI,函数将按

  • python 基于opencv 绘制图像轮廓

    图像轮廓概念 轮廓是一系列相连的点组成的曲线,代表了物体的基本外形. 谈起轮廓不免想到边缘,它们确实很像.简单的说,轮廓是连续的,边缘并不全都连续(下图).其实边缘主要是作为图像的特征使用,比如可以用边缘特征可以区分脸和手:而轮廓主要用来分析物体的形态,比如物体的周长和面积等,可以说边缘包括轮廓. 寻找轮廓的操作一般用于二值图像,所以通常会使用阈值分割或Canny边缘检测先得到二值图. 注意:寻找轮廓是针对白色物体的,一定要保证物体是白色,而背景是黑色,不然很多人在寻找轮廓时会找到图片最外面的一

  • python通过opencv调用摄像头操作实例分析

    实例源码: #pip3 install opencv-python import cv2 from datetime import datetime FILENAME = 'myvideo.avi' WIDTH = 1280 HEIGHT = 720 FPS = 24.0 # 必须指定CAP_DSHOW(Direct Show)参数初始化摄像头,否则无法使用更高分辨率 cap = cv2.VideoCapture(0, cv2.CAP_DSHOW) # 设置摄像头设备分辨率 cap.set(cv

  • python基于opencv 实现图像时钟

    解决方案详解 绘制表盘 表盘上只有60条分/秒刻线和12条小时刻线,当然还有表盘的外部轮廓圆,也就是重点在如何画72根线.先把简单的圆画出来: import cv2 as cv import math import datetime import numpy as np margin = 5 # 上下左右边距 radius = 220 # 圆的半径 center = (center_x, center_y) = (225, 225) # 圆心 # 1. 新建一个画板并填充成白色 img = np

  • python基于OpenCV模块实现视频流数据切割为图像帧数据(流程分析)

    动态视频流数据的处理可以转化为静态图像帧的处理,这样就可以在不改动图像模型的情况下实现视频流数据的处理工作,当然视频流数据也可以采用视频的处理方法来直接处理,这里今天主要是实践一下视频流数据的预处理工作,即:将视频流数据切割为图像帧数据,实践内容很简单,具体如下所示: #!usr/bin/env python #encoding:utf-8 ''' __Author__:沂水寒城 功能: 视频数据切割成图像数据 ''' import os import cv2 import numpy as n

  • 基于Python的OpenCV骨架化图像并显示(skeletonize)

    1. 效果图 自己画一张图,原图 VS 骨架效果图如下: opencv logo原图 VS 骨架化效果图如下: 2. 源码 # 图像骨架化~ import cv2 import imutils import numpy as np img = np.zeros((390, 390, 3), dtype="uint8") cv2.putText(img, "Beautiful Girl.....", (50, 190), cv2.FONT_HERSHEY_SIMPLE

  • 基于Python和openCV实现图像的全景拼接详细步骤

    基本介绍 图像的全景拼接,即"缝合"两张具有重叠区域的图来创建一张全景图.其中用到了计算机视觉和图像处理技术有:关键点检测.局部不变特征.关键点匹配.RANSAC(Random Sample Consensus,随机采样一致性)和透视变形. 具体步骤 (1)检测左右两张图像的SIFT关键特征点,并提取局部不变特征 : (2)使用knnMatch检测来自右图(左图)的SIFT特征,与左图(右图)进行匹配 : (3)计算视角变换矩阵H,用变换矩阵H对右图进行扭曲变换: (4)将左图(右图)

  • Python基于OpenCV实现人脸检测并保存

    本文实例为大家分享了Python基于OpenCV实现人脸检测,并保存的具体代码,供大家参考,具体内容如下 安装opencv 如果安装了pip的话,Opencv的在windows的安装可以直接通过cmd命令pip install opencv-python(只需要主要模块),也可以输入命令pip install opencv-contrib-python(如果需要main模块和contrib模块) 详情可以点击此处 导入opencv import cv2 所有包都包含haarcascade文件.这

  • Python基于OpenCV库Adaboost实现人脸识别功能详解

    本文实例讲述了Python基于OpenCV库Adaboost实现人脸识别功能.分享给大家供大家参考,具体如下: 以前用Matlab写神经网络的面部眼镜识别算法,研究算法逻辑,采集大量训练数据,迭代,计算各感知器的系数...相当之麻烦~而现在运用调用pythonOpenCV库Adaboost算法,无需知道算法逻辑,无需进行模型训练,人脸识别变得相当之简单了. 需要用到的库是opencv(open source computer vision),下载安装方式如下: 使用pip install num

  • python 基于opencv去除图片阴影

    一.前言 如果你自己打印过东西,应该有过这种经历.如果用自己拍的图片,在手机上看感觉还是清晰可见,但是一打印出来就是漆黑一片.比如下面这两张图片: 因为左边的图片有大片阴影,所以打印出来的图片不堪入目(因为打印要3毛钱,所以第二张图片只是我用程序模拟的效果). 那有什么办法可以解决吗?答案是肯定的,今天我们就来探讨几个去除阴影的方法. 二.如何去除阴影? 首先为了方便处理,我们通常会对图片进行灰度转换(即将图片转换成只有一个图层的灰色图像). 然后我们分析一下,在上面的图片中有三个主色调,分别是

随机推荐