Python使用mongodb保存爬取豆瓣电影的数据过程解析

创建爬虫项目douban

scrapy startproject douban

设置items.py文件,存储要保存的数据类型和字段名称

# -*- coding: utf-8 -*-
import scrapy
class DoubanItem(scrapy.Item):
 title = scrapy.Field()
 # 内容
 content = scrapy.Field()
 # 评分
 rating_num = scrapy.Field()
 # 简介
 quote = scrapy.Field()

设置爬虫文件doubanmovies.py

# -*- coding: utf-8 -*-
import scrapy
from douban.items import DoubanItem
class DoubanmoviesSpider(scrapy.Spider):
 name = 'doubanmovies'
 allowed_domains = ['movie.douban.com']
 offset = 0
 url = 'https://movie.douban.com/top250?start='
 start_urls = [url + str(offset)]
 def parse(self, response):
  # print('*'*60)
  # print(response.url)
  # print('*'*60)
  item = DoubanItem()
  info = response.xpath("//div[@class='info']")
  for each in info:
   item['title'] = each.xpath(".//span[@class='title'][1]/text()").extract()
   item['content'] = each.xpath(".//div[@class='bd']/p[1]/text()").extract()
   item['rating_num'] = each.xpath(".//span[@class='rating_num']/text()").extract()
   item['quote'] = each .xpath(".//span[@class='inq']/text()").extract()
   yield item
   # print(item)
  self.offset += 25
  if self.offset <= 250:
   yield scrapy.Request(self.url + str(self.offset),callback=self.parse)

设置管道文件,使用mongodb数据库来保存爬取的数据。重点部分

# -*- coding: utf-8 -*-
from scrapy.conf import settings
import pymongo
class DoubanPipeline(object):
 def __init__(self):
  self.host = settings['MONGODB_HOST']
  self.port = settings['MONGODB_PORT']
 def process_item(self, item, spider):
  # 创建mongodb客户端连接对象,该例从settings.py文件里面获取mongodb所在的主机和端口参数,可直接书写主机和端口
  self.client = pymongo.MongoClient(self.host,self.port)
  # 创建数据库douban
  self.mydb = self.client['douban']
  # 在数据库douban里面创建表doubanmovies
  # 把类似字典的数据转换为phthon字典格式
  content = dict(item)
  # 把数据添加到表里面
  self.mysheetname.insert(content)
  return item

设置settings.py文件

# -*- coding: utf-8 -*-
BOT_NAME = 'douban'
SPIDER_MODULES = ['douban.spiders']
NEWSPIDER_MODULE = 'douban.spiders'
USER_AGENT = 'Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0;'
# Configure a delay for requests for the same website (default: 0)
# See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
DOWNLOAD_DELAY = 3
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16
# Disable cookies (enabled by default)
COOKIES_ENABLED = False
# Configure item pipelines
# See https://doc.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
 'douban.pipelines.DoubanPipeline': 300,
}
# mongodb数据库设置变量
MONGODB_HOST = '127.0.0.1'
MONGODB_PORT = 27017

终端测试

scrapy crawl douban

这博客园的代码片段缩进,难道要用4个空格才可以搞定?我发现只能使用4个空格才能解决如上图的代码块的缩进

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python实现将数据框数据写入mongodb及mysql数据库的方法

    本文实例讲述了Python实现将数据框数据写入mongodb及mysql数据库的方法.分享给大家供大家参考,具体如下: 主要内容: 1.数据框数据写入mongdb方法 2.数据框数据写入mysql方法 为了以后不重复造轮子,这里总结下,如何把数据框数据写入mysql和mongodb的方法记录下来,省得翻来翻去.下面记录的都是精华. 写入mongodb代码片段(使用pymongo库): ##########################写入mongodb 数据库#################

  • Python使用pymongo库操作MongoDB数据库的方法实例

    python操作mongodb数据库 # !/usr/bin/env python # -*- coding:utf-8 -*- """ 使用pymongo库操作MongoDB数据库 """ import pymongo # 1.连接数据库服务器,获取客户端对象 mongo_client=pymongo.MongoClient('localhost',27017) # 2.获取数据库对象 db=mongo_client.myDB # db=mon

  • Python实现批量读取图片并存入mongodb数据库的方法示例

    本文实例讲述了Python实现批量读取图片并存入mongodb数据库的方法.分享给大家供大家参考,具体如下: 我的图片放在E:\image\中,然后使用python将图片读取然后,显示一张,存入取一张(可以注释掉显示图片的语句),通过Gridfs的方式存入图片.代码如下: # --* coding=utf-8 *-- from cStringIO import StringIO from pymongo import MongoClient import gridfs import os imp

  • 在Python中使用mongoengine操作MongoDB教程

    最近重新拾起Django,但是Django并不支持mongodb,但是有一个模块mongoengine可以实现Django Model类似的封装.但是mongoengine的中文文档几乎没有,有的也是简短的几句介绍和使用.下面我就分享一下我在使用过程中所记录下的一些笔记,可能有点乱.大家可以参考一下. 安装mongoengine easy_install pymongo # 依赖库 easy_install mongoengine 基本使用 from mongoengine import * f

  • Python操作MongoDB数据库PyMongo库使用方法

    引用PyMongo 复制代码 代码如下: >>> import pymongo 创建连接Connection 复制代码 代码如下: >>> import pymongo >>> conn = pymongo.Connection('localhost',27017) 或 复制代码 代码如下: >>> from pymongo import Connection >>> conn = Connection('local

  • Python常见MongoDB数据库操作实例总结

    本文实例讲述了Python常见MongoDB数据库操作.分享给大家供大家参考,具体如下: MongoDB 是一个基于分布式文件存储的数据库.由C++语言编写.旨在为WEB应用提供可扩展的高性能数据存储解决方案. MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的.他支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型.Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可

  • 使用Python脚本操作MongoDB的教程

    连接数据库 MongoClient VS Connection class MongoClient(pymongo.common.BaseObject) | Connection to MongoDB. | | Method resolution order: | MongoClient | pymongo.common.BaseObject | __builtin__.object | class Connection(pymongo.mongo_client.MongoClient) | C

  • Python使用mongodb保存爬取豆瓣电影的数据过程解析

    创建爬虫项目douban scrapy startproject douban 设置items.py文件,存储要保存的数据类型和字段名称 # -*- coding: utf-8 -*- import scrapy class DoubanItem(scrapy.Item): title = scrapy.Field() # 内容 content = scrapy.Field() # 评分 rating_num = scrapy.Field() # 简介 quote = scrapy.Field(

  • python多线程+代理池爬取天天基金网、股票数据过程解析

    简介 提到爬虫,大部分人都会想到使用Scrapy工具,但是仅仅停留在会使用的阶段.为了增加对爬虫机制的理解,我们可以手动实现多线程的爬虫过程,同时,引入IP代理池进行基本的反爬操作. 本次使用天天基金网进行爬虫,该网站具有反爬机制,同时数量足够大,多线程效果较为明显. 技术路线 IP代理池 多线程 爬虫与反爬 编写思路 首先,开始分析天天基金网的一些数据.经过抓包分析,可知: ./fundcode_search.js包含所有基金的数据,同时,该地址具有反爬机制,多次访问将会失败的情况. 同时,经

  • Python利用Scrapy框架爬取豆瓣电影示例

    本文实例讲述了Python利用Scrapy框架爬取豆瓣电影.分享给大家供大家参考,具体如下: 1.概念 Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中. 通过Python包管理工具可以很便捷地对scrapy进行安装,如果在安装中报错提示缺少依赖的包,那就通过pip安装所缺的包 pip install scrapy scrapy的组成结构如下图所示 引擎Scrapy Engine,用于中转调度其他部分的信号和数据

  • python爬取豆瓣电影TOP250数据

    在执行程序前,先在MySQL中创建一个数据库"pachong". import pymysql import requests import re #获取资源并下载 def resp(listURL): #连接数据库 conn = pymysql.connect( host = '127.0.0.1', port = 3306, user = 'root', password = '******', #数据库密码请根据自身实际密码输入 database = 'pachong', cha

  • 基于Python爬取fofa网页端数据过程解析

    FOFA-网络空间安全搜索引擎是网络空间资产检索系统(FOFA)是世界上数据覆盖更完整的IT设备搜索引擎,拥有全球联网IT设备更全的DNA信息.探索全球互联网的资产信息,进行资产及漏洞影响范围分析.应用分布统计.应用流行度态势感知等. 安装环境: pip install requests pip install lxml pip install fire 使用命令: python fofa.py -s=title="你的关键字" -o="结果输出文件" -c=&qu

  • Python实现的爬取豆瓣电影信息功能案例

    本文实例讲述了Python实现的爬取豆瓣电影信息功能.分享给大家供大家参考,具体如下: 本案例的任务为,爬取豆瓣电影top250的电影信息(包括序号.电影名称.导演和主演.评分以及经典台词),并将信息作为字典形式保存进txt文件.这里只用到requests库,没有用到beautifulsoup库 step1:首先获取每一页的源代码,用requests.get函数获取,为了防止请求错误,使用try...except.. def getpage(url): try: res=requests.get

  • Python爬虫——爬取豆瓣电影Top250代码实例

    利用python爬取豆瓣电影Top250的相关信息,包括电影详情链接,图片链接,影片中文名,影片外国名,评分,评价数,概况,导演,主演,年份,地区,类别这12项内容,然后将爬取的信息写入Excel表中.基本上爬取结果还是挺好的.具体代码如下: #!/usr/bin/python #-*- coding: utf-8 -*- import sys reload(sys) sys.setdefaultencoding('utf8') from bs4 import BeautifulSoup imp

  • python使用re模块爬取豆瓣Top250电影

    爬蟲四步原理: 1.发送请求:requests 2.获取相应数据:对方及其直接返回 3.解析并提取想要的数据:re 4.保存提取后的数据:with open()文件处理 爬蟲三步曲: 1.发送请求 2.解析数据 3.保存数据 注意:豆瓣网页爬虫必须使用请求头,否则服务器不予返回数据 import re import requests # 爬蟲三部曲: # 1.获取请求 def get_data(url, headers): response = requests.get(url, headers

  • python爬取豆瓣电影排行榜(requests)的示例代码

    '''   爬取豆瓣电影排行榜   设计思路:        1.先获取电影类型的名字以及特有的编号        2.将编号向ajax发送get请求获取想要的数据        3.将数据存放进excel表格中 ''' 环境部署: 软件安装: Python 3.7.6 官网地址:https://www.python.org/ 安装地址:https://www.python.org/ftp/python/3.7.6/python-3.7.6-amd64.exe PyCharm 2020.2.2

  • python 爬取豆瓣电影短评并利用wordcloud生成词云图

    目录 前言 第一步.准备数据 第二步.编写爬虫代码 第三步.生成词云图 前言 最近学到数据可视化到了词云图,正好学到爬虫,各种爬网站[实验名称] 爬取豆瓣电影<千与千寻>的评论并生成词云 利用爬虫获得电影评论的文本数据 处理文本数据生成词云图 第一步.准备数据 需要登录豆瓣网站才能够获得短评文本数据movie.douban.com/subject/129… 首先获取cookies,使用爬虫强大的firefox浏览器 将cookies数据复制到cookies.txt文件当中备用, 第二步.编写爬

随机推荐