python的re模块使用方法详解

一、正则表达式的特殊字符介绍

正则表达式
^      匹配行首
$      匹配行尾
.      任意单个字符
[]     匹配包含在中括号中的任意字符
[^]     匹配包含在中括号中的字符之外的字符
[-]     匹配指定范围的任意单个字符
?     匹配之前项的1次或者0次
+      匹配之前项的1次或者多次
*      匹配之前项的0次或者多次
{n}     匹配之前项的n次
{m,n}    匹配之前项最大n次,最小m次
{n,}    配置之前项至少n次

二、re模块的方法介绍

1、匹配类方法

a、findall方法

# findall方法,该方法在字符串中查找模式匹配,将所有的匹配字符串以列表的形式返回,如果文本中没有任何字符串匹配模式,则返回一个空的列表,
# 如果有一个子字符串匹配模式,则返回包含一个元素的列表,所以,无论怎么匹配,我们都可以直接遍历findall返回的结果而不会出错,这对工程师
# 编写程序来说,减少了异常情况的处理,代码逻辑更加简洁

 

# re.findall() 用来输出所有符合模式匹配的子串

re_str = "hello this is python 2.7.13 and python 3.4.5"

pattern = "python [0-9]\.[0-9]\.[0-9]"
res = re.findall(pattern=pattern,string=re_str)
print(res)

# ['python 2.7.1', 'python 3.4.5']

pattern = "python [0-9]\.[0-9]\.[0-9]{2,}"
res = re.findall(pattern=pattern,string=re_str)
print(res)

# ['python 2.7.13']

pattern = "python[0-9]\.[0-9]\.[0-9]{2,}"
res = re.findall(pattern=pattern,string=re_str)
print(res)

# []

# re.findall() 方法,返回一个列表,如果匹配到的话,列表中的元素为匹配到的子字符串,如果没有匹配到,则返回一个空的列表

re_str = "hello this is python 2.7.13 and Python 3.4.5"

pattern = "python [0-9]\.[0-9]\.[0-9]"
res = re.findall(pattern=pattern,string=re_str,flags=re.IGNORECASE)
print(res)

# ['python 2.7.1', 'Python 3.4.5']

# 设置标志flags=re.IGNORECASE,意思为忽略大小写

b、编译的方式使用正则表达式

# 我们一般采用编译的方式使用python的正则模块,如果在大量的数据量中,编译的方式使用正则性能会提高很多,具体读者们可以可以实际测试
re_str = "hello this is python 2.7.13 and Python 3.4.5"
re_obj = re.compile(pattern = "python [0-9]\.[0-9]\.[0-9]",flags=re.IGNORECASE)
res = re_obj.findall(re_str)
print(res)

c、match方法

# match方法,类似于字符串中的startwith方法,只是match应用在正则表达式中更加强大,更富有表现力,match函数用以匹配字符串的开始部分,如果模式
# 匹配成功,返回一个SRE_Match类型的对象,如果模式匹配失败,则返回一个None,因此对于普通的前缀匹配,他的用法几乎和startwith一模一样,例如我
# 们要判断data字符串是否以what和是否以数字开头
s_true = "what is a boy"
s_false = "What is a boy"
re_obj = re.compile("what")

print(re_obj.match(string=s_true))
# <_sre.SRE_Match object; span=(0, 4), match='what'

print(re_obj.match(string=s_false))
# None

s_true = "123what is a boy"
s_false = "what is a boy"

re_obj = re.compile("\d+")

print(re_obj.match(s_true))
# <_sre.SRE_Match object; span=(0, 3), match='123'>

print(re_obj.match(s_true).start())
# 0
print(re_obj.match(s_true).end())
# 3
print(re_obj.match(s_true).string)
# 123what is a boy
print(re_obj.match(s_true).group())
# 123

print(re_obj.match(s_false))
# None

d、search方法

# search方法,模式匹配成功后,也会返回一个SRE_Match对象,search方法和match的方法区别在于match只能从头开始匹配,而search可以从
# 字符串的任意位置开始匹配,他们的共同点是,如果匹配成功,返回一个SRE_Match对象,如果匹配失败,返回一个None,这里还要注意,
# search仅仅查找第一次匹配,也就是说一个字符串中包含多个模式的匹配,也只会返回第一个匹配的结果,如果要返回所有的结果,最简单
# 的方法就是findall方法,也可以使用finditer方法

e、finditer方法

# finditer返回一个迭代器,遍历迭代器可以得到一个SRE_Match对象,比如下面的例子
re_str = "what is a different between python 2.7.14 and python 3.5.4"

re_obj = re.compile("\d{1,}\.\d{1,}\.\d{1,}")

for i in re_obj.finditer(re_str):
  print(i)

# <_sre.SRE_Match object; span=(35, 41), match='2.7.14'>
# <_sre.SRE_Match object; span=(53, 58), match='3.5.4'>

2、修改类方法介绍

a、sub方法

# re模块sub方法类似于字符串中的replace方法,只是sub方法支持使用正则表达式,所以,re模块的sub方法使用场景更加广泛
re_str = "what is a different between python 2.7.14 and python 3.5.4"

re_obj = re.compile("\d{1,}\.\d{1,}\.\d{1,}")

print(re_obj.sub("a.b.c",re_str,count=1))
# what is a different between python a.b.c and python 3.5.4

print(re_obj.sub("a.b.c",re_str,count=2))
# what is a different between python a.b.c and python a.b.c

print(re_obj.sub("a.b.c",re_str))
# what is a different between python a.b.c and python a.b.c

b、split方法

# re模块的split方法和python字符串中的split方法功能是一样的,都是将一个字符串拆分成子字符串的列表,区别在于re模块的split方法能够
# 使用正则表达式
# 比如下面的例子,使用. 空格 : !分割字符串,返回的是一个列表
re_str = "what is a different between python 2.7.14 and python 3.5.4 USA:NewYork!Zidan.FRA"

re_obj = re.compile("[. :!]")

print(re_obj.split(re_str))
# ['what', 'is', 'a', 'different', 'between', 'python', '2', '7', '14', 'and', 'python', '3', '5', '4', 'USA', 'NewYork', 'Zidan', 'FRA']

c、大小写不敏感设置

# 3、大小写不敏感

# re.compile(flags=re.IGNORECASE)

d、非贪婪匹配

# 4、非贪婪匹配,贪婪匹配总是匹配到最长的那个字符串,相应的,非贪婪匹配是匹配到最小的那个字符串,只需要在匹配字符串的时候加一个?即可

# 下面的例子,注意两个.
s = "Beautiful is better than ugly.Explicit is better than impliciy."

re_obj = re.compile("Beautiful.*y\.")

print(re_obj.findall(s))
# ['Beautiful is better than ugly.Explicit is better than implicit.']

re_obj = re.compile("Beautiful.*?\.")

print(re_obj.findall(s))
# ['Beautiful is better than ugly.']

e、在正则匹配字符串中加一个小括号,会有什么的效果呢?

如果是要配置一个真正的小括号,那么就需要转义符,下面的例子大家仔细看下,注意下search方法返回的对象的group(1)这个方法是报错的

import re
s = "=aa1239d&&& 0a ()--"

# obj = re.compile("\(\)")
# search
# rep = obj.search(s)
# print(rep)
# <_sre.SRE_Match object; span=(15, 17), match='()'>
# print(rep.group(1))
# IndexError: no such group
# print(rep.group())
# ()
# findall

rep = obj.findall(s)
print(rep)
# ['()']

如果是要返回括号中匹配的字符串中,则该小括号不需要转义符,findall方法返回的是小伙好中匹配到的字符串,search.group()方法的返回的整个模式匹配到字符串,search.group(1)这个是匹配第一个小括号中的模式匹配到的字符串,search.group(2)这个是匹配第二个小括号中的模式匹配到的字符串,以此类推

s = "=aa1239d&&& 0a ()--"
rep = re.compile("\w+(&+)")

print(rep.findall(s))
# ['&&&']
print(rep.search(s).group())
# aa1239d&&&
print(rep.search(s).group(1))
# &&&

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 对python中的six.moves模块的下载函数urlretrieve详解

    实验环境:windows 7,anaconda 3(python 3.5),tensorflow(gpu/cpu) 函数介绍:所用函数为six.moves下的urllib中的函数,调用如下urllib.request.urlretrieve(url,[filepath,[recall_func,[data]]]).简单介绍一下,url是必填的指的是下载地址,filepath指的是保存的本地地址,recall_func指的是回调函数,下载过程中会调用可以用来显示下载进度. 实验代码:以下载cifa

  • python中requests模块的使用方法

    本文实例讲述了python中requests模块的使用方法.分享给大家供大家参考.具体分析如下: 在HTTP相关处理中使用python是不必要的麻烦,这包括urllib2模块以巨大的复杂性代价获取综合性的功能.相比于urllib2,Kenneth Reitz的Requests模块更能简约的支持完整的简单用例. 简单的例子: 想象下我们试图使用get方法从http://example.test/获取资源并且查看返回代码,content-type头信息,还有response的主体内容.这件事无论使用

  • Python3使用requests模块实现显示下载进度的方法详解

    本文实例讲述了Python3使用requests模块实现显示下载进度的方法.分享给大家供大家参考,具体如下: 一.配置request 1. 相关资料 请求关键参数:stream=True.默认情况下,当你进行网络请求后,响应体会立即被下载.你可以通过 stream 参数覆盖这个行为,推迟下载响应体直到访问 Response.content 属性. tarball_url = 'https://github.com/kennethreitz/requests/tarball/master' r =

  • Python实现使用request模块下载图片demo示例

    本文实例讲述了Python实现使用request模块下载图片.分享给大家供大家参考,具体如下: 利用流传输下载图片 # -*- coding: utf-8 -*- import requests def download_image(): """ demo:下载图片 :return: """ headers = {"User-Agent":"Mozilla/5.0 (Windows NT 6.1; WOW64) Ap

  • Python线程池模块ThreadPoolExecutor用法分析

    本文实例讲述了Python线程池模块ThreadPoolExecutor用法.分享给大家供大家参考,具体如下: python3内置的有Threadingpool和ThreadPoolExecutor模块,两个都可以做线程池,当然ThreadPoolExecutor会更好用一些,而且也有ProcessPoolExecutor进程池模块,使用方法基本一致. 首先导入模块 from concurrent.futures import ThreadPoolExecutor 使用方法很简单,最常用的可能就

  • python PrettyTable模块的安装与简单应用

    prettyTable 是一款很简洁但是功能强大的第三方模块,主要是将输入的数据转化为格式化的形式来输出,即:以表格的形式的打印输出出来,能够起到美观的效果,今天简单地试用了一下, 一.下载与安装 进入pypi.python.org查找并下载PrettyTable将其放在Python文件夹下的Scripts文件夹下 进入命令提示符工具,转到Scripts文件夹下,通过命令pip install prettytable-0.7.2.tar.bz2安装该模块 二.简单的使用 导入该模块 from p

  • python安装sklearn模块的方法详解

    可直接用这行命令!: pip install -U scikit-learn 其他命令: (1)更新pip python -m pip install --upgrade pip (2)安装 scipy 在网址http://www.lfd.uci.edu/~gohlke/pythonlibs/ 中找到你需要的版本scipy 例如windows 64 位 Python2.7 对应下载:scipy-0.18.0-cp27-cp27m-win_amd64.whl cd 下载scipy 目录下,安装 p

  • Python实现创建模块的方法详解

    目录 楔子 __import__ importlib.machinery 通过 module 类创建模块 将一个类的实例变成一个模块 小结 楔子 导入一个模块,我们一般都会使用 import 关键字,但有些场景下 import 难以满足我们的需要.所以除了 import 之外还有很多其它导入模块的方式,下面就来介绍一下. __import__ 这是一个内置函数,解释器在 import 的时候,实际上就执行了这个函数. # import os 等价于如下方式 os = __import__("os

  • python的re模块使用方法详解

    一.正则表达式的特殊字符介绍 正则表达式 ^ 匹配行首 $ 匹配行尾 . 任意单个字符 [] 匹配包含在中括号中的任意字符 [^] 匹配包含在中括号中的字符之外的字符 [-] 匹配指定范围的任意单个字符 ? 匹配之前项的1次或者0次 + 匹配之前项的1次或者多次 * 匹配之前项的0次或者多次 {n} 匹配之前项的n次 {m,n} 匹配之前项最大n次,最小m次 {n,} 配置之前项至少n次 二.re模块的方法介绍 1.匹配类方法 a.findall方法 # findall方法,该方法在字符串中查找

  • python 环境变量和import模块导入方法(详解)

    1.定义 模块:本质就是.py结尾的文件(逻辑上组织python代码)模块的本质就是实现一个功能 文件名就是模块名称 包: 一个有__init__.py的文件夹:用来存放模块文件 2.导入模块 import 模块名 form 模块名 import * from 模块名 import 模块名 as 新名称 3. 导入模块本质 import 模块名 ===> 将模块中所有的数据赋值给模块名,调用时需要模块名.方法名() from 模块名 import 方法名 ==>将该方法单独放到当前文件运行一遍

  • 通过字符串导入 Python 模块的方法详解

    我们平时导入第三方模块的时候,一般使用的是 import 关键字,例如: import scrapy from scrapy.spider import Spider 但是如果各位同学看过 Scrapy 的 settings.py 文件,就会发现里面会通过字符串的方式来指定pipeline 和 middleware,例如: DOWNLOADER_MIDDLEWARES = { 'Test.middlewares.ExceptionRetryMiddleware': 545, 'Test.midd

  • Python内建模块struct实例详解

    本文研究的主要是Python内建模块struct的相关内容,具体如下. Python中变量的类型只有列表.元祖.字典.集合等高级抽象类型,并没有像c中定义了位.字节.整型等底层初级类型.因为Python本来就是高级解释性语言,运行的时候都是经过翻译后再在底层运行.如何打通Python和其他语言之间的类型定义障碍,Python的内建模块struct完全解决了所有问题. 知识介绍: 在struct模块中最最常用的三个: (1)struct.pack:用于将Python的值根据格式符,转换为字符串(因

  • python os.path模块常用方法实例详解

    os.path模块主要用于文件的属性获取,在编程中经常用到,以下是该模块的几种常用方法.更多的方法可以去查看官方文档:http://docs.python.org/library/os.path.html 1.os.path.abspath(path) 返回path规范化的绝对路径. >>> os.path.abspath('test.csv') 'C:\\Python25\\test.csv' >>> os.path.abspath('c:\\test.csv') '

  • python对于requests的封装方法详解

    由于requests是http类接口的核心,因此封装前考虑问题比较多: 1. 对多种接口类型的支持: 2. 连接异常时能够重连: 3. 并发处理的选择: 4. 使用方便,容易维护: 当前并未全部实现,后期会不断完善.重点提一下并发处理的选择:python的并发处理机制由于存在GIL的原因,实现起来并不是很理想,综合考虑多进程.多线程.协程,在不考虑大并发性能测试的前提下使用了多线程-线程池的形式实现.使用的是 concurrent.futures模块.当前仅方便支持webservice接口. #

  • python文件处理fileinput使用方法详解

    这篇文章主要介绍了python文件处理fileinput使用方法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.介绍 fileinput模块可以对一个或多个文件中的内容进行迭代.遍历等操作,我们常用的open函数是对一个文件进行读写操作. fileinput模块的input()函数比open函数更高效和好用,体现在: input()函数生成一个迭代器,保证了在遇到大文件的读取时不会占用太大的内存. 用fileinput对文件进行循环遍历

  • python连接mongodb集群方法详解

    简单的测试用例 #!/usr/bin/python # -*- coding: UTF-8 -*- import time from pymongo import MongoClient # 连接单机 # single mongo # c = MongoClient(host="192.168.89.151", port=27017) # 连接集群 c = MongoClient('mongodb://192.168.89.151,192.168.89.152,192.168.89.1

随机推荐