使用Python自动化破解自定义字体混淆信息的方法实例

注意:本示例仅供学习参考~

混淆原理

出于某种原因,明文信息通过自定义字体进行渲染,达到混淆目的。

举个例子:

网页源码 <p>123</p> 在正常字体的渲染下,浏览者看到的是 123 这 3 个数字。

如果创建一种自定义字体,把 1 渲染成 5,那么浏览者看到的便是 523 这 3 个数字。

这样便达到混淆信息的效果,常见于对付爬虫之类的自动化工具。

破解方法

下载自定义字体文件(通常在 css @font-face 中找到),保存成 a.ttf 文件。

安装以下依赖项目

  1. tesseract 4.0 及以上版本,以及简体中文(chi_sim)和英文(eng)数据文件。
  2. python tesserocr 最新源码(github)版本。
  3. python fonttools 库。
  4. python pillow 库。

运行以下代码

# -*- coding: utf-8 -*-
本例采用 tesseract OCR 引擎,根据字体文件自动生成密文与明文的字符映射表,实现解密功能。
@author: 李毅
from tesserocr import PyTessBaseAPI, PSM
from PIL import Image, ImageDraw, ImageFont
from fontTools.ttLib import TTFont
import string
class OCR(object):
 default_config = {
 # ocr engine
 'data_path': None,
 'lang': 'chi_sim',
 'white_list': None,
 'black_list': None,
 # image
 'font': None,
 'image_size': (60, 60),
 'font_size': 30,
 'text_offset': (15, 15),
 }
 def __init__(self, config={}):
 c = dict(self.default_config)
 c.update(config)
 self.api = PyTessBaseAPI(path=c['data_path'], lang=c['lang'], psm=PSM.SINGLE_CHAR)
 self.img = Image.new('RGB', c['image_size'], color='white')
 self.draw = ImageDraw.Draw(self.img)
 self.font = ImageFont.truetype(c['font'], size=c['font_size'])
 self.text_offset = c['text_offset']
 if c['white_list']:
  self.api.SetVariable('tessedit_char_whitelist', c['white_list'])
 if c['black_list']:
  self.api.SetVariable('tessedit_char_blacklist', c['black_list'])
 self.font_tool = TTFont(c['font'])
 self.empty_char = self._predict_empty_char()
 def _predict_empty_char(self):
 self.api.SetImage(self.img)
 return self.api.GetUTF8Text().strip()
 def is_char_in_font(self, char):
 for t in self.font_tool['cmap'].tables:
  if t.isUnicode():
  if ord(char) in t.cmap:
   return True
 return False
 def predict(self, char):
 ''' 返回转换后的字符,或空串'' '''
 if not self.is_char_in_font(char):
  return char # 若字体无法渲染该字符,则原样返回。此处可酌情移除。
 self.img.paste('white', (0, 0, self.img.size[0], self.img.size[1]))
 self.draw.text(self.text_offset, char, fill='black', font=self.font)
 self.api.SetImage(self.img)
 c2 = self.api.GetUTF8Text().strip()
 if c2 == self.empty_char:
  return '' # 某些字符可能渲染成空白,此时返回空串。
 return c2
class Decoder(object):
 def __init__(self, data_path, font):
 self.cache = {} # 缓存已知的映射关系。
 OCR.default_config.update(dict(data_path=data_path, font=font))
 self.ocr_digit = OCR(dict(
  lang='eng',
  white_list=string.digits,
  black_list=string.ascii_letters,
 ))
 self.ocr_letter = OCR(dict(
  lang='eng',
  black_list=string.digits,
  white_list=string.ascii_letters,
 ))
 self.ocr_other = OCR()
 def decode(self, char):
 if char not in self.cache:
  c2 = self._decode_when_cache_miss(char)
  self.cache[char] = c2 or char
 return self.cache[char]
 def _decode_when_cache_miss(self, char):
 ocr = self.ocr_other
 if char in string.digits:
  ocr = self.ocr_digit
 elif char in string.ascii_letters:
  ocr = self.ocr_letter
 return ocr.predict(char)
if __name__ == '__main__':
 s = '''你好,青划长务, 8175-13-79'''
 d = Decoder('tessdata/', 'a.ttf')
 print(''.join(map(d.decode, s)))

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对我们的支持。如果你想了解更多相关内容请查看下面相关链接

(0)

相关推荐

  • Python字符串逆序的实现方法【一题多解】

    https://www.jb51.net/article/156406.htm https://www.jb51.net/article/156407.htm 1. 使用索引 >> strA = 'abcdefg' >> strA[::-1] 'gfedcba' 2. 使用 list 的 reverse 方法 >> l = [c for c in strA] >> l.reverse() >> ''.join(l) 'gfedcba' 3. 使用

  • Python常用的json标准库

    当请求 headers 中,添加一个name为 Accept,值为 application/json 的 header(也即"我"(浏览器)接收的是 json 格式的数据),这样,向服务器请求返回的未必一定是 HTML 页面,也可能是 JSON 文档. 1. 数据交换格式 -- JSON(JavaScript Object Notation) http 1.1 规范 请求一个特殊编码的过程在 http1.1 规范中称为内容协商(content negotiation) JSON 特点

  • Python标准库使用OrderedDict类的实例讲解

    目标:创建一个字典,记录几对python词语,使用OrderedDict类来写,并按顺序输出. 写完报错: [root@centos7 tmp]# python python_terms.py File "python_terms.py", line 9 from name,language in python_terms.items(): ^ SyntaxError: invalid syntax 代码如下: from collections import OrderedDict p

  • Python语言检测模块langid和langdetect的使用实例

    之前使用数据编码风格检测的模块chardet比较多一点,今天提到的两个模块是检测数据的语言类型,比如是:中文还是英文,模块的使用方法也比较简单,我这里只是简单地使用了一下,因为项目中有这个需求,所以拿来用了一下,并没有深入地去研究这两个模块,模块的地址链接我都给出来了,需要的话可以去研究下: def langidFunc(): ''' https://github.com/yishuihanhan/langid.py ''' print langid.classify("We Are Famil

  • 强悍的Python读取大文件的解决方案

    Python 环境下文件的读取问题,请参见拙文 Python基础之文件读取的讲解 这是一道著名的 Python 面试题,考察的问题是,Python 读取大文件和一般规模的文件时的区别,也即哪些接口不适合读取大文件. 1. read() 接口的问题 f = open(filename, 'rb') f.read() 我们来读取 1 个 nginx 的日至文件,规模为 3Gb 大小.read() 方法执行的操作,是一次性全部读入内存,显然会造成: MemoryError ... 也即会发生内存溢出.

  • centos6.5安装python3.7.1之后无法使用pip的解决方案

    编译安装全是坑-- 第一遍装完无法使用pip,报错找不到ssl模块.各种报错: pip is configured with locations that require TLS/SSL, however the ssl module in Python is not available. ... configure: error: Invalid --with-openssl value ... 结果各种捣鼓. 1.注意cetos6.5自带的openssl版本是1.0.1,需要升级到1.0.2

  • Python基于datetime或time模块分别获取当前时间戳的方法实例

    python的时间模块生成时间戳的方法是非常简单的,因为最近频繁用到了时间戳功能,这里简单总结了一下日常使用最为频繁的两个时间模块各自生成当前时间戳的方法,很简单,具体如下: now_time=str(datetime.datetime.now().strftime('%Y%m%d')) nowTime=str(time.strftime('%Y%m%d',time.localtime(time.time()))) print 'now_time:',now_time print 'nowTim

  • Python英文文本分词(无空格)模块wordninja的使用实例

    在NLP中,数据清洗与分词往往是很多工作开始的第一步,大多数工作中只有中文语料数据需要进行分词,现有的分词工具也已经有了很多了,这里就不再多介绍了.英文语料由于其本身存在空格符所以无需跟中文语料同样处理,如果英文数据中没有了空格,那么应该怎么处理呢? 今天介绍一个工具就是专门针对上述这种情况进行处理的,这个工具叫做:wordninja,地址在这里. 下面简单以实例看一下它的功能: def wordinjaFunc(): ''' https://github.com/yishuihanhan/wo

  • Python实现去除列表中重复元素的方法总结【7种方法】

    这里首先给出来我很早之前写的一篇博客,Python实现去除列表中重复元素的方法小结[4种方法],感兴趣的话可以去看看,今天是在实践过程中又积累了一些方法,这里一并总结放在这里. 由于内容很简单,就不再过多说明了,这里直接上代码,具体如下: # !/usr/bin/env python # -*- coding:utf-8 -*- ''' __Author__:沂水寒城 功能: python列表去除方法总结(7种方法) ''' import sys reload(sys) import copy

  • Python基础之文件读取的讲解

    with open(filename) as fp: dataMat = [] for line in fp.readlines(): # fp.readlines()返回一个list,list of strs # 也即line类型为`str` curLine = line.strip().split('\t') # 只有`str`类型才有strip()成员函数, # 在经过split()分割,得到list类型 # 也即curLine类型为list # curLine 仍然是由字符串构成的lis

随机推荐