Python pandas常用函数详解

本文研究的主要是pandas常用函数,具体介绍如下。

1 import语句

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import datetime
import re

2 文件读取

df = pd.read_csv(path='file.csv')
参数:header=None 用默认列名,0,1,2,3...
names=['A', 'B', 'C'...] 自定义列名
index_col='A'|['A', 'B'...] 给索引列指定名称,如果是多重索引,可以传list
skiprows=[0,1,2] 需要跳过的行号,从文件头0开始,skip_footer从文件尾开始
nrows=N 需要读取的行数,前N行
chunksize=M 返回迭代类型TextFileReader,每M条迭代一次,数据占用较大内存时使用
sep=':'数据分隔默认是',',根据文件选择合适的分隔符,如果不指定参数,会自动解析
skip_blank_lines=False 默认为True,跳过空行,如果选择不跳过,会填充NaN
converters={'col1', func} 对选定列使用函数func转换,通常表示编号的列会使用(避免转换成int)

dfjs = pd.read_json('file.json') 可以传入json格式字符串
dfex = pd.read_excel('file.xls', sheetname=[0,1..]) 读取多个sheet页,返回多个df的字典

3 数据预处理

df.duplicated() 返回各行是否是上一行的重复行
df.drop_duplicates() 删除重复行,如果需要按照列过滤,参数选填['col1', 'col2',...]
df.fillna(0) 用实数0填充na
df.dropna() axis=0|1 0-index 1-column
how='all'|'any' all-全部是NA才删 any-只要有NA就全删
del df['col1'] 直接删除某一列
df.drop(['col1',...], aixs=1) 删除指定列,也可以删除行
df.column = col_lst 重新制定列名
df.rename(index={'row1':'A'}, 重命名索引名和列名
columns={'col1':'A1'})
df.replace(dict) 替换df值,前后值可以用字典表,{1:‘A', '2':'B'}

def get_digits(str):
m = re.match(r'(\d+(\.\d+)?)', str.decode('utf-8'))
if m is not None:
return float(m.groups()[0])
else:
return 0
df.apply(get_digits) DataFrame.apply,只获取小数部分,可以选定某一列或行
df['col1'].map(func) Series.map,只对列进行函数转换

pd.merge(df1, df2, on='col1',
how='inner',sort=True) 合并两个DataFrame,按照共有的某列做内连接(交集),outter为外连接(并集),结果排序

pd.merge(df1, df2, left_on='col1',
right_on='col2') df1 df2没有公共列名,所以合并需指定两边的参考列

pd.concat([sr1, sr2, sr3,...], axis=0) 多个Series堆叠成多行,结果仍然是一个Series
pd.concat([sr1, sr2, sr3,...], axis=1) 多个Series组合成多行多列,结果是一个DataFrame,索引取并集,没有交集的位置填入缺省值NaN

df1.combine_first(df2) 用df2的数据补充df1的缺省值NaN,如果df2有更多行,也一并补上

df.stack() 列旋转成行,也就是列名变为索引名,原索引变成多层索引,结果是具有多层索引的Series,实际上是把数据集拉长

df.unstack() 将含有多层索引的Series转换为DataFrame,实际上是把数据集压扁,如果某一列具有较少类别,那么把这些类别拉出来作为列
df.pivot() 实际上是unstack的应用,把数据集压扁

pd.get_dummies(df['col1'], prefix='key') 某列含有有限个值,且这些值一般是字符串,例如国家,借鉴位图的思想,可以把k个国家这一列量化成k列,每列用0、1表示

4 数据筛选

df.columns 列名,返回Index类型的列的集合
df.index 索引名,返回Index类型的索引的集合
df.shape 返回tuple,行x列
df.head(n=N) 返回前N条
df.tail(n=M) 返回后M条
df.values 值的二维数组,以numpy.ndarray对象返回
df.index DataFrame的索引,索引不可以直接赋值修改
df.reindex(index=['row1', 'row2',...]
columns=['col1', 'col2',...]) 根据新索引重新排序
df[m:n] 切片,选取m~n-1行
df[df['col1'] > 1] 选取满足条件的行
df.query('col1 > 1') 选取满足条件的行
df.query('col1==[v1,v2,...]')
df.ix[:,'col1'] 选取某一列
df.ix['row1', 'col2'] 选取某一元素
df.ix[:,:'col2'] 切片选取某一列之前(包括col2)的所有列
df.loc[m:n] 获取从m~n行(推荐)
df.iloc[m:n] 获取从m~n-1行
df.loc[m:n-1,'col1':'coln'] 获取从m~n行的col1~coln列

sr=df['col'] 取某一列,返回Series
sr.values Series的值,以numpy.ndarray对象返回
sr.index Series的索引,以index对象返回

5 数据运算与排序

df.T DataFrame转置
df1 + df2 按照索引和列相加,得到并集,NaN填充
df1.add(df2, fill_value=0) 用其他值填充
df1.add/sub//mul/div 四则运算的方法
df - sr DataFrame的所有行同时减去Series
df * N 所有元素乘以N
df.add(sr, axis=0) DataFrame的所有列同时减去Series

sr.order() Series升序排列
df.sort_index(aixs=0, ascending=True) 按行索引升序
df.sort_index(by=['col1', 'col2'...]) 按指定列优先排序
df.rank() 计算排名rank值

6 数学统计

sr.unique Series去重
sr.value_counts() Series统计频率,并从大到小排序,DataFrame没有这个方法
sr.describe() 返回基本统计量和分位数

df.describe() 按各列返回基本统计量和分位数
df.count() 求非NA值得数量
df.max() 求最大值
df.min() 求最大值
df.sum(axis=0) 按各列求和
df.mean() 按各列求平均值
df.median() 求中位数
df.var() 求方差
df.std() 求标准差
df.mad() 根据平均值计算平均绝对利差
df.cumsum() 求累计和
sr1.corr(sr2) 求相关系数
df.cov() 求协方差矩阵
df1.corrwith(df2) 求相关系数

pd.cut(array1, bins) 求一维数据的区间分布
pd.qcut(array1, 4) 按指定分位数进行区间划分,4可以替换成自定义的分位数列表

df['col1'].groupby(df['col2']) 列1按照列2分组,即列2作为key
df.groupby('col1') DataFrame按照列1分组
grouped.aggreagte(func) 分组后根据传入函数来聚合
grouped.aggregate([f1, f2,...]) 根据多个函数聚合,表现成多列,函数名为列名
grouped.aggregate([('f1_name', f1), ('f2_name', f2)]) 重命名聚合后的列名
grouped.aggregate({'col1':f1, 'col2':f2,...}) 对不同的列应用不同函数的聚合,函数也可以是多个

df.pivot_table(['col1', 'col2'],
rows=['row1', 'row2'],
aggfunc=[np.mean, np.sum]
fill_value=0,
margins=True) 根据row1, row2对col1, col2做分组聚合,聚合方法可以指定多种,并用指定值替换缺省值

pd.crosstab(df['col1'], df['col2']) 交叉表,计算分组的频率

总结

以上就是本文关于Python pandas常用函数详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

(0)

相关推荐

  • python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)

    前言 最近在网上搜了许多关于pandas.DataFrame的操作说明,都是一些基础的操作,但是这些操作组合起来还是比较费时间去正确操作DataFrame,花了我挺长时间去调整BUG的.我在这里做一些总结,方便你我他.感兴趣的朋友们一起来看看吧. 一.创建DataFrame的简单操作: 1.根据字典创造: In [1]: import pandas as pd In [3]: aa={'one':[1,2,3],'two':[2,3,4],'three':[3,4,5]} In [4]: bb=

  • Python 中pandas索引切片读取数据缺失数据处理问题

    引入 numpy已经能够帮助我们处理数据,能够结合matplotlib解决我们数据分析的问题,那么pandas学习的目的在什么地方呢? numpy能够帮我们处理处理数值型数据,但是这还不够 很多时候,我们的数据除了数值之外,还有字符串,还有时间序列等 比如:我们通过爬虫获取到了存储在数据库中的数据 比如:之前youtube的例子中除了数值之外还有国家的信息,视频的分类(tag)信息,标题信息等 所以,numpy能够帮助我们处理数值,但是pandas除了处理数值之外(基于numpy),还能够帮助我

  • Python pandas RFM模型应用实例详解

    本文实例讲述了Python pandas RFM模型应用.分享给大家供大家参考,具体如下: 什么是RFM模型 根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有3个神奇的要素,这3个要素构成了数据分析最好的指标: 最近一次消费 (Recency): 客户最近一次交易时间的间隔.R值越大,表示客户交易距今越久,反之则越近: 消费频率 (Frequency): 客户在最近一段时间内交易的次数.F值越大,表示客户交易越频繁,反之则不够活跃: 消费金额 (Monetary): 客户

  • python pandas dataframe 按列或者按行合并的方法

    concat 与其说是连接,更准确的说是拼接.就是把两个表直接合在一起.于是有一个突出的问题,是横向拼接还是纵向拼接,所以concat 函数的关键参数是axis . 函数的具体参数是: concat(objs,axis=0,join='outer',join_axes=None,ignore_index=False,keys=None,levels=None,names=None,verigy_integrity=False) objs 是需要拼接的对象集合,一般为列表或者字典 axis=0 是

  • Windows下Python使用Pandas模块操作Excel文件的教程

    安装Python环境 ANACONDA是一个Python的发行版本,包含了400多个Python最常用的库,其中就包括了数据分析中需要经常使用到的Numpy和Pandas等.更重要的是,不论在哪个平台上,都可以一键安装,自动配置好环境,不需要用户任何的额外操作,非常方便.因此,安装Python环境就只需要到ANACONDA网站上下载安装文件,双击安装即可. ANACONDA官方下载地址:https://www.continuum.io/downloads 安装完成之后,使用windows + r

  • Python使用Pandas读写Excel实例解析

    这篇文章主要介绍了Python使用Pandas读写Excel实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 Pandas是python的一个数据分析包,纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具. Pandas提供了大量能使我们快速便捷地处理数据的函数和方法. Pandas官方文档:https://pandas.pydata.org/pandas-docs/stable/ Pandas中文文档:https:/

  • 在Python中利用Pandas库处理大数据的简单介绍

    在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章<别老扯什么Hadoop了,你的数据根本不够大>指出:只有在超过5TB数据量的规模下,Hadoop才是一个合理的技术选择.这次拿到近亿条日志数据,千万级数据已经是关系型数据库的查询分析瓶颈,之前使用过Hadoop对大量文本进行分类,这次决定采用Python来处理数据: 硬件环境         CPU:3.5 GHz Intel Core i7         内存:32 GB HDDR 3 1600 MHz         硬

  • Python 中pandas.read_excel详细介绍

    Python 中pandas.read_excel详细介绍 #coding:utf-8 import pandas as pd import numpy as np filefullpath = r"/home/geeklee/temp/all_gov_file/pol_gov_mon/downloads/1.xls" #filefullpath = r"/home/geeklee/temp/all_gov_file/pol_gov_mon/downloads/26368f3

  • Python科学计算之Pandas详解

    起步 Pandas最初被作为金融数据分析工具而开发出来,因此 pandas 为时间序列分析提供了很好的支持. Pandas 的名称来自于面板数据(panel data)和python数据分析 (data analysis) .panel data是经济学中关于多维数据集的一个术语,在Pandas中也提供了panel的数据类型. 在我看来,对于 Numpy 以及 Matplotlib ,Pandas可以帮助创建一个非常牢固的用于数据挖掘与分析的基础.而Scipy当然是另一个主要的也十分出色的科学计

  • Python pandas自定义函数的使用方法示例

    本文实例讲述了Python pandas自定义函数的使用方法.分享给大家供大家参考,具体如下: 自定义函数的使用 import numpy as np import pandas as pd # todo 将自定义的函数作用到dataframe的行和列 或者Serise的行上 ser1 = pd.Series(np.random.randint(-10,10,5),index=list('abcde')) df1 = pd.DataFrame(np.random.randint(-10,10,(

  • Python3 pandas 操作列表实例详解

    1.首先需要安装pandas, 安装的时候可能由依赖的包需要安装,根据运行时候的提示,缺少哪个库,就pip 安装哪个库. 2.示例代码 import pandas as pd from pandas import ExcelWriter EX_PATH = "E:\\code\\test2.xlsx" #读取excel里面的内容 data = pd.read_excel(EX_PATH,sheet_name='Sheet1') #新增加一列内容 lista = [21, 21, 20,

  • python中pandas.DataFrame对行与列求和及添加新行与列示例

    本文介绍的是python中pandas.DataFrame对行与列求和及添加新行与列的相关资料,下面话不多说,来看看详细的介绍吧. 方法如下: 导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFrame(np.random.randn(4, 5), columns=['A', 'B', 'C', 'D', 'E']) DataFrame数据预览: A

随机推荐