c语言数据结构之并查集 总结

并查集(Union-Find Set):

一种用于管理分组的数据结构。它具备两个操作:(1)查询元素a和元素b是否为同一组 (2) 将元素a和b合并为同一组。

注意:并查集不能将在同一组的元素拆分为两组。

并查集的实现:

用树来实现。

使用树形结构来表示以后,每一组都对应一棵树,然而我们就可以将这个问题转化为树的问题了,我们看两个元素是否为一组我们只要看这两个元素的根是否一致。显然,使用树形结构将问题简单化了。合并时是我们只需要将一组的根与另一组的根相连即可。

并查集的核心在于,一棵树的所有节点根节点都为一个节点。使用Find函数查询时,也是查询到这个节点的根节点。

一行并查集:

int find(int x)
{
 return p[x]==x? x:find(p[x]); //x的父节点保存在p[x]中,如果没有父节点则p[x]=x。
}

实现:

int node[i]; //每个节点 

//初始化n个节点
void Init(int n){
 for(int i = 0; i < n; i++){
 node[i] = i;
 }
}
//查找当前元素所在树的根节点(代表元素)
int find(int x){
 if(x == node[x])
 return x;
 return find(node[x]);
}
//合并元素x, y所处的集合
void Unite(int x, int y){
 //查找到x,y的根节点
 x = find(x);
 y = find(y);
 if(x == y)
 return ;
 //将x的根节点与y的根节点相连
 node[x] = y;
}
//判断x,y是属于同一个集合
bool same(int x, int y){
 return find(x) == find(y)

并查集的路径压缩:

在特殊情况下,这棵树是一条长长的树链,设链的最后一个结点为x,则每次执行find(x)都会遍历整条链。效率十分的地下。 改进方法很简单,只要把遍历过的结点都改成根的子结点,后面的查询就会变的快很多。

并查集的复杂度

加入这两个优化之后,并查集的效率就非常高。对n个元素的并查集操作一次的复杂度是: O(α(n))。这里,α(n)是阿克曼(Ackermann)函数的反函数。效率要高于O(log n)。

不过这里O(α(n))是平均复杂度。也就是说,多次操作之后平均复杂度为O(α(n)),换而言之,并不是每一次操作都满足O(α(n))。

路径压缩后的优化代码:

 int node[i]; //每个节点
 int rank[i]; //树的高度 

 //初始化n个节点
 void Init(int n){
 for(int i = 0; i < n; i++){
  node[i] = i;
  rank[i] = 0;
 }
 }
 //查找当前元素所在树的根节点(代表元素)
 int find(int x){
 if(x == node[x])
  return x;
 return node[x] = find(node[x]); //在第一次查找时,将节点直连到根节点
 }
 //合并元素x, y所处的集合
 void Unite(int x, int y){
 //查找到x,y的根节点
 x = find(x);
 y = find(y);
 if(x == y)
  return ;
 //判断两棵树的高度,然后在决定谁为子树
 if(rank[x] < rank[y]){
  node[x] = y;
 }else{
  node[y] = x;
  if(rank[x] == rank[y]) rank[x]++:
 }
 }
 //判断x,y是属于同一个集合
 bool same(int x, int y){
 return find(x) == find(y);
 }

实例分析:

题目:部落

在一个社区里,每个人都有自己的小圈子,还可能同时属于很多不同的朋友圈。我们认为朋友的朋友都算在一个部落里,于是要请你统计一下,在一个给定社区中,到底有多少个互不相交的部落?并且检查任意两个人是否属于同一个部落。

输入格式:

输入在第一行给出一个正整数N(<= 104),是已知小圈子的个数。随后N行,每行按下列格式给出一个小圈子里的人:

K P[1] P[2] ... P[K]

其中K是小圈子里的人数,P[i](i=1, .., K)是小圈子里每个人的编号。这里所有人的编号从1开始连续编号,最大编号不会超过104。

之后一行给出一个非负整数Q(<= 104),是查询次数。随后Q行,每行给出一对被查询的人的编号。

输出格式:

首先在一行中输出这个社区的总人数、以及互不相交的部落的个数。随后对每一次查询,如果他们属于同一个部落,则在一行中输出“Y”,否则输出“N”。

输入样例:
4
3 10 1 2
2 3 4
4 1 5 7 8
3 9 6 4
2
10 5
3 7

输出样例:

10 2
Y
N

分析:典型并查集问题。

一个部落对应一个集合。 根节点数量等于部落数量。
并查集把每个部落的人连起来,记录哪些人出现过,枚举标号10000,找出有多少人和部落,查询并查集维护。

源码分析:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
int pre[10005];
int f[10005];

void init() { //初始化父集合pre[10005],以及出现的标志数组f[10005]
	for(int i=0; i<10004; i++)
		pre[i]=i, f[i]=0;
}

int find(int x) { //并查集查找根节点的 递归程序
	return pre[x]==x? x : pre[x]=find(pre[x]);
}

int main()
{
	init();
	int n,q,k,a,b;
	cin>>n;
	for(int i=0; i<n; i++) {
		cin>>k>>a;
		f[a]=1;
		for(int j=1; j<k; j++) {
			cin>>b;
			f[b]=1;
			int x=find(a);
			int y=find(b);
			if(x!=y) pre[x]=y;
		}
	}
	int cnt=0,tot=0; //cnt为所有人数 tot为部落数量
	for(int i=0; i<10004; i++) {
		if(f[i] == 1) { //如果标志为1 则说明出现过,cnt加一
			cnt++;
			if(pre[i]==i) tot++; //如果下标为本身 说明其为根节点 根节点数量为部落的数量
		}
	}
	cout<<cnt<<" "<<tot<<endl;
	cin>>q;
	for(int i=0; i<q; i++) {
		cin>>a>>b;
		if(find(a) == find(b)) //若两参数 有同一根节点 说明为一个部落。
			cout<<"Y"<<endl;
		else cout<<"N"<<endl;
	}
	return 0;
}

好了,这篇文章就介绍到这了。

(0)

相关推荐

  • c语言数据结构之并查集 总结

    并查集(Union-Find Set): 一种用于管理分组的数据结构.它具备两个操作:(1)查询元素a和元素b是否为同一组 (2) 将元素a和b合并为同一组. 注意:并查集不能将在同一组的元素拆分为两组. 并查集的实现: 用树来实现. 使用树形结构来表示以后,每一组都对应一棵树,然而我们就可以将这个问题转化为树的问题了,我们看两个元素是否为一组我们只要看这两个元素的根是否一致.显然,使用树形结构将问题简单化了.合并时是我们只需要将一组的根与另一组的根相连即可. 并查集的核心在于,一棵树的所有节点

  • 详解Java实现数据结构之并查集

    ​一.什么是并查集 对于一种数据结构,肯定是有自己的应用场景和特性,那么并查集是处理什么问题的呢? 并查集是一种树型的数据结构,用于处理一些不相交集合(disjoint sets)的合并及查询问题,常常在使用中以森林来表示.在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中.其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受:即使在空

  • Java数据结构之并查集的实现

    目录 代码解析 代码应用 实际应用 并查集就是将原本不在一个集合里面的内容合并到一个集合中. 在实际的场景中用处不多. 除了出现在你需要同时去几个集合里面查询,避免出现查询很多次,从而放在一起查询的情况. 下面简单实现一个例子,我们来举例说明一下什么是并查集,以及究竟并查集解决了什么问题. 代码解析 package com.chaojilaji.book.andcheck; public class AndCheckSet { public static Integer getFather(in

  • C++高级数据结构之并查集

    目录 1.动态连通性 2.union-find算法API 3.quick-find算法 4.quick-union算法 5.加权quick-union算法 6.使用路径压缩的加权quick-union算法 7.算法比较 前言: 高级数据结构(Ⅰ)并查集(union-find) 动态连通性 union-find算法API quick-find算法 quick-union算法 加权quick-union算法 使用路径压缩的加权quick-union算法 算法比较 并查集 > 左神版 高级数据结构(Ⅰ

  • 数据结构与算法之并查集(不相交集合)

    认识并查集 对于并查集(不相交集合),很多人会感到很陌生,没听过或者不是特别了解.实际上并查集是一种挺高效的数据结构.实现简单,只是所有元素统一遵从一个规律所以让办事情的效率高效起来. 对于定意义,百科上这么定义的: 并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中.其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受:即使在

  • java 数据结构并查集详解

    目录 一.概述 二.实现 2.1 Quick Find实现 2.2 Quick Union实现 三.优化 3.1基于size的优化 3.2基于rank优化 3.2.1路径压缩(Path Compression ) 3.2.2路径分裂(Path Spliting) 3.2.3路径减半(Path Halving) 一.概述 并查集:一种树型数据结构,用于解决一些不相交集合的合并及查询问题.例如:有n个村庄,查询2个村庄之间是否有连接的路,连接2个村庄 两大核心: 查找 (Find) : 查找元素所在

  • C语言数据结构之单链表与双链表的增删改查操作实现

    目录 前言 单链表的增删改查 定义结构体以及初始化 增加结点 删除结点 查找修改结点 移除结点 最终效果 双链表的基本操作 初始化建表 遍历双链表 指定位置插入结点 指定位置删除结点 查找结点位置 最终效果 结语 前言 上篇博客分享了创建链表传入二级指针的细节,那么今天就分享几个c语言课程实践设计吧.这些程序设计搞懂了的话相当于链表的基础知识牢牢掌握了,那么再应对复杂的链表类的题也就能慢慢钻研了.学习是一个积累的过程,想要游刃有余就得勤学苦练! 单链表的增删改查 (1)项目需求 构造带有头结点的

  • C语言并查集的非递归实现详解

    目录 [算法分析] [算法代码] 并查集压缩路径非递归写法 参考文章 总结 [算法分析] 经典的递归实现的并查集,在数据规模过大时,可能会爆栈,因此有了并查集的非递归实现.核心代码如下: int find(int x) { int t=x; while(t!=pre[t]) t=pre[t]; while(x!=pre[x]) { x=pre[x]; pre[x]=t; } return t; } void merge(int x,int y) { if(find(x)!=find(y)) pr

  • java编程实现并查集的路径压缩代码详解

    首先看两张路径压缩的图片: 并查集(Union-find Sets)是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题.一些常见的用途有求连通子图.求最小生成树的 Kruskal 算法和求最近公共祖先(Least Common Ancestors, LCA)等. 使用并查集时,首先会存在一组不相交的动态集合 S={S 1 ,S 2 ,⋯,S k } ,一般都会使用一个整数表示集合中的一个元素. 每个集合可能包含一个或多个元素,并选出集合中的某个元素作为代表.每个集合中具体包含

  • python实现一个简单的并查集的示例代码

    并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题.常常在使用中以森林来表示. 并查集有三种基本操作,获得根节点,判断两节点是否连通,以及将两不连通的节点相连(相当于将两节点各自的集合合并) 用UnionFind类来表示一个并查集,在构造函数中,初始化一个数组parent,parent[i]表示的含义为,索引为i的节点,它的直接父节点为parent[i].初始化时各个节点都不相连,因此初始化parent[i]=i,让自己成为自己的父节点,从而实现各节点不互连. def __ini

随机推荐