Python matplotlib绘图可视化知识点整理(小结)

无论你工作在什么项目上,IPython都是值得推荐的。利用ipython --pylab,可以进入PyLab模式,已经导入了matplotlib库与相关软件包(例如Numpy和Scipy),额可以直接使用相关库的功能。

本文作为学习过程中对matplotlib一些常用知识点的整理,方便查找。

这样IPython配置为使用你所指定的matplotlib GUI后端(TK/wxPython/PyQt/Mac OS X native/GTK)。对于大部分用户而言,默认的后端就已经够用了。Pylab模式还会向IPython引入一大堆模块和函数以提供一种更接近MATLAB的界面。

import matplotlib.pyplot as plt
labels='frogs','hogs','dogs','logs'
sizes=15,20,45,10
colors='yellowgreen','gold','lightskyblue','lightcoral'
explode=0,0.1,0,0
plt.pie(sizes,explode=explode,labels=labels,colors=colors,autopct='%1.1f%%',shadow=True,startangle=50)
plt.axis('equal')
plt.show()

matplotlib图标正常显示中文

为了在图表中能够显示中文和负号等,需要下面一段设置:

import matplotlib.pyplot as plt
plt.rcParams['font.sas-serig']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号

matplotlib inline和pylab inline

可以使用ipython --pylab打开ipython命名窗口。

%matplotlib inline #notebook模式下
%pylab inline  #ipython模式下

这两个命令都可以在绘图时,将图片内嵌在交互窗口,而不是弹出一个图片窗口,但是,有一个缺陷:除非将代码一次执行,否则,无法叠加绘图,因为在这两种模式下,是要有plt出现,图片会立马show出来,因此:

推荐在ipython notebook时使用,这样就能很方便的一次编辑完代码,绘图。

为项目设置matplotlib参数

在代码执行过程中,有两种方式更改参数:

  1. 使用参数字典(rcParams)
  2. 调用matplotlib.rc()命令通过传入关键字元祖,修改参数

如果不想每次使用matplotlib时都在代码部分进行配置,可以修改matplotlib的文件参数。可以用matplot.get_config()命令来找到当前用户的配置文件目录。

配置文件包括以下配置项:

axex: 设置坐标轴边界和表面的颜色、坐标刻度值大小和网格的显示
backend: 设置目标暑促TkAgg和GTKAgg
figure: 控制dpi、边界颜色、图形大小、和子区( subplot)设置
font: 字体集(font family)、字体大小和样式设置
grid: 设置网格颜色和线性
legend: 设置图例和其中的文本的显示
line: 设置线条(颜色、线型、宽度等)和标记
patch: 是填充2D空间的图形对象,如多边形和圆。控制线宽、颜色和抗锯齿设置等。
savefig: 可以对保存的图形进行单独设置。例如,设置渲染的文件的背景为白色。
verbose: 设置matplotlib在执行期间信息输出,如silent、helpful、debug和debug-annoying。
xticks和yticks: 为x,y轴的主刻度和次刻度设置颜色、大小、方向,以及标签大小。

线条相关属性标记设置

用来该表线条的属性

线条风格linestyle或ls 描述 线条风格linestyle或ls 描述
‘-‘ 实线 ‘:' 虚线
‘–' 破折线 ‘None',' ‘,'' 什么都不画
‘-.' 点划线

线条标记

标记maker 描述 标记 描述
‘o' 圆圈 ‘.'
‘D' 菱形 ‘s' 正方形
‘h' 六边形1 ‘*' 星号
‘H' 六边形2 ‘d' 小菱形
‘_' 水平线 ‘v' 一角朝下的三角形
‘8' 八边形 ‘<' 一角朝左的三角形
‘p' 五边形 ‘>' 一角朝右的三角形
‘,' 像素 ‘^' 一角朝上的三角形
‘+' 加号 ‘\ 竖线
‘None','',' ‘ ‘x' X

颜色

可以通过调用matplotlib.pyplot.colors()得到matplotlib支持的所有颜色。

别名 颜色 别名 颜色
b 蓝色 g 绿色
r 红色 y 黄色
c 青色 k 黑色
m 洋红色 w 白色

如果这两种颜色不够用,还可以通过两种其他方式来定义颜色值:

  1. 使用HTML十六进制字符串color='eeefff'使用合法的HTML颜色名字('red','chartreuse'等)。
  2. 也可以传入一个归一化到[0,1]的RGB元祖。color=(0.3,0.3,0.4)

很多方法可以介绍颜色参数,如title()。

plt.tilte('Title in a custom color',color='#123456')

背景色

通过向如matplotlib.pyplot.axes()或者matplotlib.pyplot.subplot()这样的方法提供一个axisbg参数,可以指定坐标这的背景色。

subplot(111,axisbg=(0.1843,0.3098,0.3098)

基础

如果你向plot()指令提供了一维的数组或列表,那么matplotlib将默认它是一系列的y值,并自动为你生成x的值。默认的x向量从0开始并且具有和y同样的长度,因此x的数据是[0,1,2,3].

确定坐标范围plt.axis([xmin, xmax, ymin, ymax])

上面例子里的axis()命令给定了坐标范围。

xlim(xmin, xmax)和ylim(ymin, ymax)来调整x,y坐标范围

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from pylab import *

x = np.arange(-5.0, 5.0, 0.02)
y1 = np.sin(x)

plt.figure(1)
plt.subplot(211)
plt.plot(x, y1)

plt.subplot(212)
#设置x轴范围
xlim(-2.5, 2.5)
#设置y轴范围
ylim(-1, 1)
plt.plot(x, y1)

叠加图

用一条指令画多条不同格式的线。

import numpy as np
import matplotlib.pyplot as plt

# evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)

# red dashes, blue squares and green triangles
plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
plt.show()

plt.figure()

你可以多次使用figure命令来产生多个图,其中,图片号按顺序增加。这里,要注意一个概念当前图和当前坐标。所有绘图操作仅对当前图和当前坐标有效。通常,你并不需要考虑这些事,下面的这个例子为大家演示这一细节。

import matplotlib.pyplot as plt
plt.figure(1)        # 第一张图
plt.subplot(211)       # 第一张图中的第一张子图
plt.plot([1,2,3])
plt.subplot(212)       # 第一张图中的第二张子图
plt.plot([4,5,6])

plt.figure(2)        # 第二张图
plt.plot([4,5,6])      # 默认创建子图subplot(111)

plt.figure(1)        # 切换到figure 1 ; 子图subplot(212)仍旧是当前图
plt.subplot(211)       # 令子图subplot(211)成为figure1的当前图
plt.title('Easy as 1,2,3')  # 添加subplot 211 的标题

figure感觉就是给图像ID,之后可以索引定位到它。

plt.text()添加文字说明

text()可以在图中的任意位置添加文字,并支持LaTex语法

xlable(), ylable()用于添加x轴和y轴标签

title()用于添加图的题目

import numpy as np
import matplotlib.pyplot as plt

mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)

# 数据的直方图
n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75)

plt.xlabel('Smarts')
plt.ylabel('Probability')
#添加标题
plt.title('Histogram of IQ')
#添加文字
plt.text(60, .025, r'$\mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.show()

text中前两个参数感觉应该是文本出现的坐标位置。

plt.annotate()文本注释

在数据可视化的过程中,图片中的文字经常被用来注释图中的一些特征。使用annotate()方法可以很方便地添加此类注释。在使用annotate时,要考虑两个点的坐标:被注释的地方xy(x, y)和插入文本的地方xytext(x, y)。[^1]

import numpy as np
import matplotlib.pyplot as plt

ax = plt.subplot(111)

t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2*np.pi*t)
line, = plt.plot(t, s, lw=2)

plt.annotate('local max', xy=(2, 1), xytext=(3, 1.5),
      arrowprops=dict(facecolor='black', shrink=0.05),
      )

plt.ylim(-2,2)
plt.show()

plt.xticks()/plt.yticks()设置轴记号

现在是明白干嘛用的了,就是人为设置坐标轴的刻度显示的值。

# 导入 matplotlib 的所有内容(nympy 可以用 np 这个名字来使用)
from pylab import *

# 创建一个 8 * 6 点(point)的图,并设置分辨率为 80
figure(figsize=(8,6), dpi=80)

# 创建一个新的 1 * 1 的子图,接下来的图样绘制在其中的第 1 块(也是唯一的一块)
subplot(1,1,1)

X = np.linspace(-np.pi, np.pi, 256,endpoint=True)
C,S = np.cos(X), np.sin(X)

# 绘制余弦曲线,使用蓝色的、连续的、宽度为 1 (像素)的线条
plot(X, C, color="blue", linewidth=1.0, linestyle="-")

# 绘制正弦曲线,使用绿色的、连续的、宽度为 1 (像素)的线条
plot(X, S, color="r", lw=4.0, linestyle="-")

plt.axis([-4,4,-1.2,1.2])
# 设置轴记号

xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
    [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])

yticks([-1, 0, +1],
    [r'$-1$', r'$0$', r'$+1$'])
# 在屏幕上显示
show()

当我们设置记号的时候,我们可以同时设置记号的标签。注意这里使用了 LaTeX。[^2]

移动脊柱 坐标系

ax = gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))

这个地方确实没看懂,囧,以后再说吧,感觉就是移动了坐标轴的位置。

plt.legend()添加图例

plot(X, C, color="blue", linewidth=2.5, linestyle="-", label="cosine")
plot(X, S, color="red", linewidth=2.5, linestyle="-", label="sine")

legend(loc='upper left')

matplotlib.pyplot

使用plt.style.use('ggplot')命令,可以作出ggplot风格的图片。

# Import necessary packages
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('ggplot')
from sklearn import datasets
from sklearn import linear_model
import numpy as np
# Load data
boston = datasets.load_boston()
yb = boston.target.reshape(-1, 1)
Xb = boston['data'][:,5].reshape(-1, 1)
# Plot data
plt.scatter(Xb,yb)
plt.ylabel('value of house /1000 ($)')
plt.xlabel('number of rooms')
# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit( Xb, yb)
# Plot outputs
plt.scatter(Xb, yb, color='black')
plt.plot(Xb, regr.predict(Xb), color='blue',
     linewidth=3)
plt.show()

给特殊点做注释

好吧,又是注释,多个例子参考一下!

我们希望在 2π/32π/3 的位置给两条函数曲线加上一个注释。首先,我们在对应的函数图像位置上画一个点;然后,向横轴引一条垂线,以虚线标记;最后,写上标签。

t = 2*np.pi/3
# 作一条垂直于x轴的线段,由数学知识可知,横坐标一致的两个点就在垂直于坐标轴的直线上了。这两个点是起始点。
plot([t,t],[0,np.cos(t)], color ='blue', linewidth=2.5, linestyle="--")
scatter([t,],[np.cos(t),], 50, color ='blue')

annotate(r'$\sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$',
     xy=(t, np.sin(t)), xycoords='data',
     xytext=(+10, +30), textcoords='offset points', fontsize=16,
     arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))

plot([t,t],[0,np.sin(t)], color ='red', linewidth=2.5, linestyle="--")
scatter([t,],[np.sin(t),], 50, color ='red')

annotate(r'$\cos(\frac{2\pi}{3})=-\frac{1}{2}$',
     xy=(t, np.cos(t)), xycoords='data',
     xytext=(-90, -50), textcoords='offset points', fontsize=16,
     arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))

plt.subplot()

plt.subplot(2,3,1)表示把图标分割成2*3的网格。也可以简写plt.subplot(231)。其中,第一个参数是行数,第二个参数是列数,第三个参数表示图形的标号。

plt.axes()

我们先来看什么是Figure和Axes对象。在matplotlib中,整个图像为一个Figure对象。在Figure对象中可以包含一个,或者多个Axes对象。每个Axes对象都是一个拥有自己坐标系统的绘图区域。其逻辑关系如下:

plt.axes-官方文档

  1. axes() by itself creates a default full subplot(111) window axis.
  2. axes(rect, axisbg='w') where rect = [left, bottom, width, height] in normalized (0, 1) units. axisbg is the background color for the axis, default white.
  3. axes(h) where h is an axes instance makes h the current axis. An Axes instance is returned.

rect=[左, 下, 宽, 高] 规定的矩形区域,rect矩形简写,这里的数值都是以figure大小为比例,因此,若是要两个axes并排显示,那么axes[2]的左=axes[1].左+axes[1].宽,这样axes[2]才不会和axes[1]重叠。

show code:

import matplotlib.pyplot as plt
import numpy as np

# create some data to use for the plot
dt = 0.001
t = np.arange(0.0, 10.0, dt)
r = np.exp(-t[:1000]/0.05)        # impulse response
x = np.random.randn(len(t))
s = np.convolve(x, r)[:len(x)]*dt # colored noise

# the main axes is subplot(111) by default
plt.plot(t, s)
plt.axis([0, 1, 1.1*np.amin(s), 2*np.amax(s)])
plt.xlabel('time (s)')
plt.ylabel('current (nA)')
plt.title('Gaussian colored noise')

# this is an inset axes over the main axes
a = plt.axes([.65, .6, .2, .2], axisbg='y')
n, bins, patches = plt.hist(s, 400, normed=1)
plt.title('Probability')
plt.xticks([])
plt.yticks([])

# this is another inset axes over the main axes
a = plt.axes([0.2, 0.6, .2, .2], axisbg='y')
plt.plot(t[:len(r)], r)
plt.title('Impulse response')
plt.xlim(0, 0.2)
plt.xticks([])
plt.yticks([])

plt.show()

pyplot.pie参数

matplotlib.pyplot.pie

colors颜色

找出matpltlib.pyplot.plot中的colors可以取哪些值?

  1. so-Named colors in matplotlib
  2. matplotlib学习之设置线条颜色、形状
for name,hex in matplotlib.colors.cnames.iteritems():
  print name,hex

打印颜色值和对应的RGB值。

plt.axis('equal')避免比例压缩为椭圆

autopct

How do I use matplotlib autopct?

autopct enables you to display the percent value using Python string formatting. For example, if autopct='%.2f', then for each pie wedge, the format string is '%.2f' and the numerical percent value for that wedge is pct, so the wedge label is set to the string '%.2f'%pct.

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • Python使用matplotlib绘图无法显示中文问题的解决方法
  • 学习python中matplotlib绘图设置坐标轴刻度、文本
  • Python使用matplotlib简单绘图示例
  • python+matplotlib实现动态绘制图片实例代码(交互式绘图)
  • 基于Python数据可视化利器Matplotlib,绘图入门篇,Pyplot详解
  • python使用matplotlib绘图时图例显示问题的解决
  • python的绘图工具matplotlib使用实例
  • python绘图库Matplotlib的安装
(0)

相关推荐

  • Python使用matplotlib简单绘图示例

    本文实例讲述了Python使用matplotlib简单绘图.分享给大家供大家参考,具体如下: # -*- coding:utf-8 -*- #! python2 """ Created on Mon Apr 24 12:48:40 2017 @author: x-power """ import matplotlib.pyplot as plt #首先载入 matplotlib的绘图模块pyplot,并且重命名为plt. import numpy

  • 学习python中matplotlib绘图设置坐标轴刻度、文本

    总结matplotlib绘图如何设置坐标轴刻度大小和刻度. 上代码: from pylab import * from matplotlib.ticker import MultipleLocator, FormatStrFormatter xmajorLocator = MultipleLocator(20) #将x主刻度标签设置为20的倍数 xmajorFormatter = FormatStrFormatter('%1.1f') #设置x轴标签文本的格式 xminorLocator = M

  • python使用matplotlib绘图时图例显示问题的解决

    前言 matplotlib是基于Python语言的开源项目,旨在为Python提供一个数据绘图包.在使用Python matplotlib库绘制数据图时,需要使用图例标注数据类别,但是传参时,会出现图例解释文字只显示第一个字符,需要在传参时在参数后加一个逗号(应该是python语法,加逗号,才可以把参数理解为元组类型吧),就可解决这个问题, 示例如下 import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker

  • python+matplotlib实现动态绘制图片实例代码(交互式绘图)

    本文研究的主要是python+matplotlib实现动态绘制图片(交互式绘图)的相关内容,具体介绍和实现代码如下所示. 最近在研究动态障碍物避障算法,在Python语言进行算法仿真时需要实时显示障碍物和运动物的当前位置和轨迹,利用Anaconda的Python打包集合,在Spyder中使用Python3.5语言和matplotlib实现路径的动态显示和交互式绘图(和Matlab功能类似). Anaconda是一个用于科学计算的Python发行版,支持 Linux, Mac, Windows系统

  • 基于Python数据可视化利器Matplotlib,绘图入门篇,Pyplot详解

    Pyplot matplotlib.pyplot是一个命令型函数集合,它可以让我们像使用MATLAB一样使用matplotlib.pyplot中的每一个函数都会对画布图像作出相应的改变,如创建画布.在画布中创建一个绘图区.在绘图区上画几条线.给图像添加文字说明等.下面我们就通过实例代码来领略一下他的魅力. import matplotlib.pyplot as plt plt.plot([1,2,3,4]) plt.ylabel('some numbers') plt.show() 上图是我们通

  • Python使用matplotlib绘图无法显示中文问题的解决方法

    本文实例讲述了Python使用matplotlib绘图无法显示中文问题的解决方法.分享给大家供大家参考,具体如下: 在python中,默认情况下是无法显示中文的,如下代码: import matplotlib.pyplot as plt # 定义文本框和箭头格式 decisionNode = dict(boxstyle = "sawtooth", fc = "0.8") leafNode = dict(boxstyle = "round4", f

  • python的绘图工具matplotlib使用实例

    matplotlib是功能十分强大的绘制二维图形的Python模块,它用Python语言实现了MATLAB画图函数的易用性,同时又有非常强大的可定制性.它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中.它的文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序.因此如果你需要绘制某种类型的图,只需要在这个页面中浏览.复制.粘贴一下,基本上都能搞定! 实例代码如下: 1. 柱状图 import matp

  • python绘图库Matplotlib的安装

    本文简单介绍了Python绘图库Matplotlib的安装,简介如下: matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地 进行制图.Matplotlib的安装可以参见:官网链接 http://matplotlib.org/users/installing.html 安装总结步骤如下: windows 平台上下载.exe格式 直接安装. 1.python下载安装 下载地址:http://www.python.org/download/

  • Python matplotlib绘图可视化知识点整理(小结)

    无论你工作在什么项目上,IPython都是值得推荐的.利用ipython --pylab,可以进入PyLab模式,已经导入了matplotlib库与相关软件包(例如Numpy和Scipy),额可以直接使用相关库的功能. 本文作为学习过程中对matplotlib一些常用知识点的整理,方便查找. 这样IPython配置为使用你所指定的matplotlib GUI后端(TK/wxPython/PyQt/Mac OS X native/GTK).对于大部分用户而言,默认的后端就已经够用了.Pylab模式

  • Python Matplotlib数据可视化模块使用详解

    目录 前言 1 matplotlib 开发环境搭建 2 绘制基础 2.1 绘制直线 2.2 绘制折线 2.3 设置标签文字和线条粗细 2.4 绘制一元二次方程的曲线 y=x^2 2.5 绘制正弦曲线和余弦曲线 3 绘制散点图 4 绘制柱状图 5 绘制饼状图 6 绘制直方图 7 绘制等高线图 8 绘制三维图 总结 本文主要介绍python 数据可视化模块 Matplotlib,并试图对其进行一个详尽的介绍. 通过阅读本文,你可以: 了解什么是 Matplotlib 掌握如何用 Matplotlib

  • python Matplotlib数据可视化(1):简单入门

    1 matplot入门指南 matplotlib是Python科学计算中使用最多的一个可视化库,功能丰富,提供了非常多的可视化方案,基本能够满足各种场景下的数据可视化需求.但功能丰富从另一方面来说也意味着概念.方法.参数繁多,让许多新手望而却步. 据我了解,大部分人在对matplotlib接触不深时都是边画图边百度,诸如这类的问题,我想大家都似曾相识:Python如何画散点图,matplotlib怎么将坐标轴标签旋转45度,怎么设置图例字体大小等等.无论针对哪一个问题,往往都有多种解决方法,搜索

  • python数据分析绘图可视化

    前言: 数据分析初始阶段,通常都要进行可视化处理.数据可视化旨在直观展示信息的分析结果和构思,令某些抽象数据具象化,这些抽象数据包括数据测量单位的性质或数量.本章用的程序库matplotlib是建立在Numpy之上的一个Python图库,它提供了一个面向对象的API和一个过程式类的MATLAB API,他们可以并行使用. 1. import numpy as np import matplotlib.pyplot as plt scores=np.random.randint(0,100,50)

  • python matplotlib绘图,修改坐标轴刻度为文字的实例

    工作中偶尔需要做客流分析,用pyplot 库绘图.一般情况下, x 轴刻度默认显示为数字. 例如: 我希望x 轴刻度显示为星期日期. 查询pyplot 文档, 发现了 xtick() 函数可以修改刻度. 代码如下: import matplotlib.pyplot as plt import numpy as np #val_ls = [np.random.randint(100) + i*20 for i in range(7)] scale_ls = range(7) index_ls =

  • 完美解决Python matplotlib绘图时汉字显示不正常的问题

    Matplotlib是一个很好的作图软件,但是python下默认不支持中文,所以需要做一些修改,方法如下: 1.在python安装目录的Lib目录下创建ch.py文件. 文件中代码为: 保存,以后通过以下代码调用: #-*-coding:utf-8-*- #文件名: ch.py def set_ch(): from pylab import mpl mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定默认字体 mpl.rcParams['axes

  • python matplotlib 绘图 和 dpi对应关系详解

    我就废话不多说啦! dpi=1 600×400 dpi=2 1200×800 dpi=3 1800×1200 ........ dpi=21 (21×600)×(21×400) ---> 12600×8400 示例代码: ............... ............... plt_temp=y_axis plt_temp.resize(len(y_axis) , 1) plt_arr=np.concatenate((plt_arr,plt_temp ), axis=1) #print

  • 解决Python Matplotlib绘图数据点位置错乱问题

    在绘制正负样本在各个特征维度上的CDF(累积分布)图时出现了以下问题: 问题具体表现为: 1.几个负样本的数据点位置倒错 2.X轴刻度变成了乱七八糟一团鬼东西 最终解决办法 造成上述情况的原因其实是由于输入matplotlib.plot()函数的数据x_data和y_data从CSV文件中直接导入后格式为string,因此才会导致所有数据点的x坐标都被直接刻在了x轴上,且由于坐标数据格式错误,部分点也就表现为"乱点".解决办法就是导入x,y数据后先将其转化为float型数据,然后输入p

  • 数据库索引的知识点整理小结,你所需要了解的都在这儿了

    数据库索引,相信大家都不陌生吧. 索引是对数据库表中一列或多列的值进行排序的一种结构,使用索引可快速访问数据库表中的特定信息.作为辅助查询的工具,合理的设计索引能很大程度上减轻db的查询压力,db我们都知道,是项目最核心也是最薄弱的地方,如果压力太大很容易产生故障,造成难以预计的影响.所以,不管是日常开发还是面试,索引这一块知识体系都是必须掌握的. 当然,虽说是必须掌握,但索引的知识点很多,很多初学者经常会遗漏,这也是我为什么想写这篇知识点总结的原因,既是给读者的分享,也是给自己一次全面的复习,

  • python Matplotlib数据可视化(2):详解三大容器对象与常用设置

    上一篇博客中说到,matplotlib中所有画图元素(artist)分为两类:基本型和容器型.容器型元素包括三种:figure.axes.axis.一次画图的必经流程就是先创建好figure实例,接着由figure去创建一个或者多个axes,然后通过axes实例调用各种方法来添加各种基本型元素,最后通过axes实例本身的各种方法亦或者通过axes获取axis实例实现对各种元素的细节操控. 本篇博客继续上一节的内容,展开介绍三大容器元素创建即通过三大容器可以完成的常用设置. 1 figure 1.

随机推荐