mysql not in、left join、IS NULL、NOT EXISTS 效率问题记录

NOT IN、JOIN、IS NULL、NOT EXISTS效率对比

语句一:select count(*) from A where A.a not in (select a from B)

语句二:select count(*) from A left join B on A.a = B.a where B.a is null

语句三:select count(*) from A where not exists (select a from B where A.a = B.a)

知道以上三条语句的实际效果是相同的已经很久了,但是一直没有深究其间的效率对比。一直感觉上语句二是最快的。
今天工作上因为要对一个数千万行数据的库进行数据清除,需要删掉两千多万行数据。大量的用到了以上三条语句所要实现的功能。本来用的是语句一,但是结果是执行速度1个小时32分,日志文件占用21GB。时间上虽然可以接受,但是对硬盘空间的占用确是个问题。因此将所有的语句一都换成语句二。本以为会更快。没想到执行40多分钟后,第一批50000行都没有删掉,反而让SQL SERVER崩溃掉了,结果令人诧异。试了试单独执行这条语句,查询近一千万行的表,语句一用了4秒,语句二却用了18秒,差距很大。语句三的效率与语句一接近。

第二种写法是大忌,应该尽量避免。第一种和第三种写法本质上几乎一样。

假设buffer pool足够大,写法二相对于写法一来说存在以下几点不足:
(1)left join本身更耗资源(需要更多资源来处理产生的中间结果集)
(2)left join的中间结果集的规模不会比表A小
(3)写法二还需要对left join产生的中间结果做is null的条件筛选,而写法一则在两个集合join的同时完成了筛选,这部分开销是额外的

这三点综合起来,在处理海量数据时就会产生比较明显的区别(主要是内存和CPU上的开销)。我怀疑楼主在测试时buffer pool可能已经处于饱和状态,这样的话,写法二的那些额外开销不得不借助磁盘上的虚拟内存,在SQL Server做换页时,由于涉及到较慢的I/O操作因此这种差距会更加明显。

关于日志文件过大,这也是正常的,因为删除的记录多嘛。可以根据数据库的用途考虑将恢复模型设为simple,或者在删除结束后将日志truncate掉并把文件shrink下来。

因为以前曾经作过一个对这个库进行无条件删除的脚本,就是要删除数据量较大的表中的所有数据,但是因为客户要求,不能使用truncate table,怕破坏已有的库结构。所以只能用delete删,当时也遇到了日志文件过大的问题,当时采用的方法是分批删除,在SQL2K中用set rowcount @chunk,在SQL2K5中用delete top @chunk。这样的操作不仅使删除时间大大减少,而且让日志量大大减少,只增长了1G左右。
但是这次清除数据的工作需要加上条件,就是delete A from A where ....后面有条件的。再次使用分批删除的方法,却已经没效果了。
不知您知不知道这是为什么。

mysql not in 和 left join 效率问题记录

首先说明该条sql的功能是查询集合a不在集合b的数据。
not in的写法


代码如下:

select add_tb.RUID
from (select distinct RUID
from UserMsg
where SubjectID =12
and CreateTime>'2009-8-14 15:30:00'
and CreateTime<='2009-8-17 16:00:00'
) add_tb
where add_tb.RUID
not in (select distinct RUID
from UserMsg
where SubjectID =12
and CreateTime<'2009-8-14 15:30:00'
)

返回444行记录用时 0.07sec
explain 结果
+----+--------------------+------------+----------------+---------------------------+------------+---------+------+------+--

----------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows |

Extra |
+----+--------------------+------------+----------------+---------------------------+------------+---------+------+------+--

----------------------------+
| 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 452 |

Using where |
| 3 | DEPENDENT SUBQUERY | UserMsg | index_subquery | RUID,SubjectID,CreateTime | RUID | 96 | func | 2 |

Using index; Using where |
| 2 | DERIVED | UserMsg | range | SubjectID,CreateTime | CreateTime | 9 | NULL | 1857 |

Using where; Using temporary |
+----+--------------------+------------+----------------+---------------------------+------------+---------+------+------+--

----------------------------+
分析:该条查询速度快原因为id=2的sql查询出来的结果比较少,所以id=1sql所以运行速度比较快,id=2的使用了临时表,不知道这个时候是否使用索引?
其中一种left join


代码如下:

select a.ruid,b.ruid
from(select distinct RUID
from UserMsg
where SubjectID =12
and CreateTime >= '2009-8-14 15:30:00'
and CreateTime<='2009-8-17 16:00:00'
) a left join (
select distinct RUID
from UserMsg
where SubjectID =12 and CreateTime< '2009-8-14 15:30:00'
) b on a.ruid = b.ruid
where b.ruid is null

返回444行记录用时 0.39sec
explain 结果
+----+-------------+------------+-------+----------------------+------------+---------+------+------+-----------------------

-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra

|
+----+-------------+------------+-------+----------------------+------------+---------+------+------+-----------------------

-------+
| 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 452 |

|
| 1 | PRIMARY | <derived3> | ALL | NULL | NULL | NULL | NULL | 1112 | Using where; Not exists

|
| 3 | DERIVED | UserMsg | ref | SubjectID,CreateTime | SubjectID | 5 | | 6667 | Using where; Using

temporary |
| 2 | DERIVED | UserMsg | range | SubjectID,CreateTime | CreateTime | 9 | NULL | 1838 | Using where; Using

temporary |
+----+-------------+------------+-------+----------------------+------------+---------+------+------+-----------------------

-------+
分析:使用了两个临时表,并且两个临时表做了笛卡尔积,导致不能使用索引并且数据量很大
另外一种left join


代码如下:

select distinct a.RUID
from UserMsg a
left join UserMsg b
on a.ruid = b.ruid
and b.subjectID =12 and b.createTime < '2009-8-14 15:30:00'
where a.subjectID =12
and a.createTime >= '2009-8-14 15:30:00'
and a.createtime <='2009-8-17 16:00:00'
and b.ruid is null;

返回444行记录用时 0.07sec
explain 结果
+----+-------------+-------+-------+---------------------------+------------+---------+--------------+------+---------------

--------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra

|
+----+-------------+-------+-------+---------------------------+------------+---------+--------------+------+---------------

--------------------+
| 1 | SIMPLE | a | range | SubjectID,CreateTime | CreateTime | 9 | NULL | 1839 | Using where;

Using temporary |
| 1 | SIMPLE | b | ref | RUID,SubjectID,CreateTime | RUID | 96 | dream.a.RUID | 2 | Using where;

Not exists; Distinct |
+----+-------------+-------+-------+---------------------------+------------+---------+--------------+------+---------------

--------------------+
分析:两次查询都是用上了索引,并且查询时同时进行的,所以查询效率应该很高
使用not exists的sql


代码如下:

select distinct a.ruid
from UserMsg a
where a.subjectID =12
and a.createTime >= '2009-8-14 15:30:00'
and a.createTime <='2009-8-17 16:00:00'
and not exists (
select distinct RUID
from UserMsg
where subjectID =12 and createTime < '2009-8-14 15:30:00'
and ruid=a.ruid
)

返回444行记录用时 0.08sec
explain 结果
+----+--------------------+---------+-------+---------------------------+------------+---------+--------------+------+------

------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra

|
+----+--------------------+---------+-------+---------------------------+------------+---------+--------------+------+------

------------------------+
| 1 | PRIMARY | a | range | SubjectID,CreateTime | CreateTime | 9 | NULL | 1839 | Using

where; Using temporary |
| 2 | DEPENDENT SUBQUERY | UserMsg | ref | RUID,SubjectID,CreateTime | RUID | 96 | dream.a.RUID | 2 | Using

where |
+----+--------------------+---------+-------+---------------------------+------------+---------+--------------+------+------

------------------------+
分析:同上基本上是一样的,只是分解了2个查询顺序执行,查询效率低于第3个

为了验证数据查询效率,将上述查询中的subjectID =12的限制条件去掉,结果统计查询时间如下
0.20s
21.31s
0.25s
0.43s

laserhe帮忙分析问题总结


代码如下:

select a.ruid,b.ruid
from( select distinct RUID
from UserMsg
where CreateTime >= '2009-8-14 15:30:00'
and CreateTime<='2009-8-17 16:00:00'
) a left join UserMsg b
on a.ruid = b.ruid
and b.createTime < '2009-8-14 15:30:00'
where b.ruid is null;

执行时间0.13s
+----+-------------+------------+-------+-----------------+------------+---------+--------+------+--------------------------

----+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra

|
+----+-------------+------------+-------+-----------------+------------+---------+--------+------+--------------------------

----+
| 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 1248 |

|
| 1 | PRIMARY | b | ref | RUID,CreateTime | RUID | 96 | a.RUID | 2 | Using where; Not exists

|
| 2 | DERIVED | UserMsg | range | CreateTime | CreateTime | 9 | NULL | 3553 | Using where; Using

temporary |
+----+-------------+------------+-------+-----------------+------------+---------+--------+------+--------------------------

----+
执行效率类似与not in的效率

数据库优化的基本原则:让笛卡尔积发生在尽可能小的集合之间,mysql在join的时候可以直接通过索引来扫描,而嵌入到子查询里头,查询规

划器就不晓得用合适的索引了。
一个SQL在数据库里是这么优化的:首先SQL会分析成一堆分析树,一个树状数据结构,然后在这个数据结构里,查询规划器会查找有没有合适

的索引,然后根据具体情况做一个排列组合,然后计算这个排列组合中的每一种的开销(类似explain的输出的计算机可读版本),然后比较里

面开销最小的,选取并执行之。那么:
explain select a.ruid,b.ruid from(select distinct RUID from UserMsg where CreateTime >= '2009-8-14 15:30:00'

and CreateTime<='2009-8-17 16:00:00' ) a left join UserMsg b on a.ruid = b.ruid and b.createTime < '2009-8-14 15:30:00'

where b.ruid is null;

explain select add_tb.RUID
-> from (select distinct RUID
-> from UserMsg
-> where CreateTime>'2009-8-14 15:30:00'
-> and CreateTime<='2009-8-17 16:00:00'
-> ) add_tb
-> where add_tb.RUID
-> not in (select distinct RUID
-> from UserMsg
-> where CreateTime<'2009-8-14 15:30:00'
-> );
explain
+----+--------------------+------------+----------------+-----------------+------------+---------+------+------+------------

------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra

|
+----+--------------------+------------+----------------+-----------------+------------+---------+------+------+------------

------------------+
| 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 1248 | Using where

|
| 3 | DEPENDENT SUBQUERY | UserMsg | index_subquery | RUID,CreateTime | RUID | 96 | func | 2 | Using index;

Using where |
| 2 | DERIVED | UserMsg | range | CreateTime | CreateTime | 9 | NULL | 3509 | Using where;

Using temporary |
+----+--------------------+------------+----------------+-----------------+------------+---------+------+------+------------

------------------+
开销是完全一样的,开销可以从 rows 那个字段得出(基本上是rows那个字段各个行的数值的乘积,也就是笛卡尔积)
但是呢:下面这个:
explain select a.ruid,b.ruid from(select distinct RUID from UserMsg where CreateTime >= '2009-8-14 15:30:00'

and CreateTime<='2009-8-17 16:00:00' ) a left join ( select distinct RUID from UserMsg where createTime < '2009-8-14

15:30:00' ) b on a.ruid = b.ruid where b.ruid is null;
执行时间21.31s
+----+-------------+------------+-------+---------------+------------+---------+------+-------+-----------------------------

-+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra

|
+----+-------------+------------+-------+---------------+------------+---------+------+-------+-----------------------------

-+
| 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 1248 |

|
| 1 | PRIMARY | <derived3> | ALL | NULL | NULL | NULL | NULL | 30308 | Using where; Not exists

|
| 3 | DERIVED | UserMsg | ALL | CreateTime | NULL | NULL | NULL | 69366 | Using where; Using temporary

|
| 2 | DERIVED | UserMsg | range | CreateTime | CreateTime | 9 | NULL | 3510 | Using where; Using temporary

|
+----+-------------+------------+-------+---------------+------------+---------+------+-------+-----------------------------

-+
我就有些不明白
为何是四行
并且中间两行巨大无比
按理说
查询规划器应该能把这个查询优化得跟前面的两个一样的
(至少在我熟悉的pgsql数据库里我有信心是一样的)
但mysql里头不是
所以我感觉查询规划器里头可能还是糙了点
我前面说过优化的基本原则就是,让笛卡尔积发生在尽可能小的集合之间
那么上面最后一种写法至少没有违反这个原则
虽然b 表因为符合条件的非常多,基本上不会用索引
但是并不应该妨碍查询优化器看到外面的join on条件,从而和前面两个SQL一样,选取主键进行join
不过我前面说过查询规划器的作用
理论上来讲
遍历一遍所有可能,计算一下开销
是合理的
我感觉这里最后一种写法没有遍历完整所有可能
可能的原因是子查询的实现还是比较简单?
子查询对数据库的确是个挑战
因为基本都是递归的东西
所以在这个环节有点毛病并不奇怪
其实你仔细想想,最后一种写法无非是我们第一种写法的一个变种,关键在表b的where 条件放在哪里
放在里面,就不会用索引去join
放在外面就会
这个本身就是排列组合的一个可能

(0)

相关推荐

  • MySQL中使用or、in与union all在查询命令下的效率对比

    OR.in和union all 查询效率到底哪个快? 网上很多的声音都是说union all 快于 or.in,因为or.in会导致全表扫描,他们给出了很多的实例. 但真的union all真的快于or.in? EXPLAIN SELECT * from employees where employees.first_NAME ='Georgi' UNION ALL SELECT * from employees where employees.first_NAME ='Bezalel' 这条语

  • 浅谈mysql的子查询联合与in的效率

    最近的产品测试发现一个问题,当并发数量小于10时,响应时间可以维持在100毫秒以内.但是当并发数到达30个时,响应时间就超过1秒.这太不能接受了,要求是通过1秒中并发100个. 经过检测发现,时间主要是耗在其中的一个存储过程中.把存储过程的语句一条一条的过一遍也没有发现明显的不合理.因为mysql本身不能提供毫秒级别的时间,google了一个mysql的能提供毫秒的时间函数,再做测试,做了一个定位.发现是其中一条语句,语句是这个样子: select .... from A, B where ..

  • MySQL利用profile分析慢sql详解(group left join效率高于子查询)

    使用profile来分析慢sql mysql 的 sql 性能分析器主要用途是显示 sql 执行的整个过程中各项资源的使用情况.分析器可以更好的展示出不良 SQL 的性能问题所在. 最近遇到一个查询比较慢的sql语句,用了子查询,大概需要0.8秒左右,这个消耗时间比较长,严重影响了性能,所以需要进行优化.单独查询单表或者子查询记录都很快,下面来看看详细的介绍. 开启profile mysql> show profiles; -- 查看是否开启 Empty set, 1 warning (0.00

  • 提高MySQL中InnoDB表BLOB列的存储效率的教程

    首先,介绍下关于InnoDB引擎存储格式的几个要点: 1.InnoDB可以选择使用共享表空间或者是独立表空间方式,建议使用独立表空间,便于管理.维护.启用 innodb_file_per_table 选项,5.5以后可以在线动态修改生效,并且执行 ALTER TABLE xx ENGINE = InnoDB 将现有表转成独立表空间,早于5.5的版本,修改完这个选项后,需要重启才能生效: 2.InnoDB的data page默认16KB,5.6版本以后,新增选项 innodb_page_size

  • mysql not in、left join、IS NULL、NOT EXISTS 效率问题记录

    NOT IN.JOIN.IS NULL.NOT EXISTS效率对比 语句一:select count(*) from A where A.a not in (select a from B) 语句二:select count(*) from A left join B on A.a = B.a where B.a is null 语句三:select count(*) from A where not exists (select a from B where A.a = B.a) 知道以上三

  • mysql使用from与join两表查询的区别总结

    前言 在mysql中,多表连接查询是很常见的需求,在使用多表查询时,可以from多个表,也可以使用join连接连个表 这两种查询有什么区别?哪种查询的效率更高呢? 带着这些疑问,决定动手试试 1.先在本地的mysql上先建两个表one和two one表 CREATE TABLE `one` ( `id` int(0) NOT NULL AUTO_INCREMENT, `one` varchar(100) NOT NULL, PRIMARY KEY (`id`) ) ENGINE = InnoDB

  • mysql中各种常见join连表查询实例总结

    本文实例讲述了mysql中各种常见join连表查询.分享给大家供大家参考,具体如下: 通常我们需要连接多个表查询数据,以获取想要的结果. 一.连接可以分为三类: (1) 内连接:join,inner join (2) 外连接:left join,left outer join,right join,right outer join,union,union all (3) 交叉连接:cross join 二.准备需要演示的表: CREATE TABLE `a` ( `id` int(11) uns

  • mysql多个left join连接查询用法分析

    本文实例讲述了mysql多个left join连接查询用法.分享给大家供大家参考,具体如下: mysql查询时需要连接多个表时,比如查询订单的商品表,需要查询商品的其他信息,其他信息不在订单的商品表,需要连接其他库的表,但是连接的条件基本都是商品ID就可以了,先给一个错误语句(查询之间的嵌套,效率很低): SELECT A.order_id, A.wid, A.work_name, A.supply_price, A.sell_price, A.total_num, A.sell_profit,

  • MySQL Innodb 存储结构 和 存储Null值 用法详解

    背景: 表空间:INNODB 所有数据都存在表空间当中(共享表空间),要是开启innodb_file_per_table,则每张表的数据会存到单独的一个表空间内(独享表空间). 独享表空间包括:数据,索引,插入缓存,数据字典.共享表空间包括:Undo信息(不会回收<物理空间上>),双写缓存信息,事务信息等. 段(segment):组成表空间,有区组成. 区(extent):有64个连续的页组成.每个页16K,总共1M.对于大的数据段,每次最后可申请4个区. 页(page):是INNODB 磁盘

  • mysql高效查询left join和group by(加索引)

    mysql高效查询 mysql牺牲了group by来增加left join的速度(前提是加了索引). user表:10万数据 实例1: 200秒左右 SELECT U.id, A.favorite_count FROM (SELECT id from user) U LEFT JOIN ( -- 点赞数 SELECT favorite_by AS user_id, SUM(favorite_count) AS favorite_count FROM favorite GROUP BY favo

  • MYSQL数据库基础之Join操作原理

    Join使用的是Nested-Loop Join算法,Nested-Loop Join有三种 select * from t1 join t2 on t1.a = t2.a; -- a 100条数据, b 1000条数据 Simple Nested-Loop Join 会遍历t1全表,t1作为驱动表,t1中的每一条数据都会到t2中做一次全表查询,该过程会比较100*1000次. 每次在t2中做全表查询时,全表扫描可就不保证在内存里了,Buffer Pool会淘汰,有可能在磁盘. Block Ne

  • MySQL中CONCAT()函数拼接出现NULL的问题解决

    项目中查询用到了concat()拼接函数,在此查询中出现了拼接的字段为null的情况,拼接结果为null在应用层报了空指针异常. SELECT CONCAT('1,',NULL,'2') result; SELECT CONCAT('1,','','2') result; 通过实践证明CONCAT()函数拼接时如果拼接的参数中有NULL时,结果为NULL. 使用以下方式来解决 方法一:使用IFNULL函数如果是NULL将其置为''空字符串. SELECT CONCAT('1,',IFNULL(N

  • Mysql体系化探讨令人头疼的JOIN运算

    目录 前言 一图总览 SQL中的JOIN SQL对JOIN的定义 JOIN定义 JOIN分类 等值JOIN 空值处理规则下分类 JOIN的实现 笨办法 数据库对于JOIN优化 分布式系统下JOIN 等值JOIN的剖析 三种等值JOIN: 外键关联 同维表 主子表 JOIN的语法简化 外键属性化 同维表等同化 子表集合化 维度对齐语法 解决关联查询 多表JOIN问题 简化JOIN运算好处: 关联查询 外键预关联 全内存下外键关联情况 进一步的外键关联 外键序号化 借助集群的力量解决大维表问题. 有

  • MySQL实战教程之Join语句执行流程

    目录 Join语句执行流程 一.Index Nested-Loop Join 二.Simple Nested-Loop Join 三.Block Nested-Loop Join 四.总结 Join语句执行流程 Hi,我是阿昌,今天学习记录的是关于Join语句执行流程的内容. 在实际生产中,关于 join 语句使用的问题,一般会集中在以下两类: 不让使用 join,使用 join 有什么问题呢? 如果有两个大小不同的表做 join,应该用哪个表做驱动表呢? 创建两个表 t1 和 t2 来说明.

随机推荐