Python NumPy矩阵对象详解及方法

目录
  • 1. 介绍
  • 2. 创建矩阵
  • 3. 矩阵特有属性
  • 4. 矩阵乘法

1. 介绍

在数学上,矩阵(Matrix)是一个按照矩形阵列排列的负数或实数集合,但在NumPy中,矩阵np.matrix是数组np.ndarray的派生类。这意味着矩阵本质上是   一个数组,拥有数组的所有属性和方法;同时,矩阵又有一些不同于数组的特性和方法首先,矩阵是二维的,不能像数组一样幻化成任意维度,即使展开或切片,返回也是二维的;其次,矩阵和矩阵、矩阵和数组都可以做加减乘除运算,运算结果都是返回矩阵;最后,矩阵的乘法不同于数组乘法

2. 创建矩阵

np.mat()函数用于创建矩阵,它可以接受列表、数组甚至是字符串等形式的参数,还可以使用dtype参数指定数据类型,

其代码如下:

import numpy as np
import numpy.matlib as mat

print(np.mat([[1,2,3],[4,5,6]], dtype=np.int)) # 使用列表创建矩阵
print(np.mat(np.arange(6).reshape((2,3)))) # 使用数组创建矩阵
print(np.mat('1 4 7; 2 5 8; 3 6 9')) # 使用Matlab风格的字符串创建矩阵

此外,和生成特殊值数组类似,numpy.matlib子模块也提供了多个函数用于生成特殊值矩阵和随机数矩阵

print(mat.zeros((2,3))) # 全0矩阵
print(mat.ones((2,3))) # 全1矩阵
print(mat.eye(3)) # 单位矩阵
print(mat.empty((2,3))) # 空矩阵
print(mat.rand((2,3))) # [0,1)区间随机数矩阵
print(mat.randn((2,3))) # 均值0方差1的高斯(正态)分布矩阵

3. 矩阵特有属性

矩阵有几个特有的属性,如转置矩阵、逆矩阵、共轭矩阵、共轭转置矩阵等。

import numpy as np

m = np.mat(np.arange(6).reshape((2,3)))
print(m)
print(m.T) # 返回自身的转置矩阵
print(m.H) # 返回自身的共轭转置矩阵
print(m.I) # 返回自身的逆矩阵
print(m.A) # 返回自身数据的视图(ndarray类)

4. 矩阵乘法

矩阵运算和数组运算大致相同,只有乘法运算有较大差别。两个数组相乘就是对应元素相乘,条件是两个数组的结构相同。事实上,及时两个数组的结构不同,只要满足特定条件,也能做乘法运算

import numpy as np

a = np.random.randint(0,10,(2,3))
print(a)

b = np.random.randint(0,10,3)
print(b)

print(a*b) # shape不同的两个数组也可以相乘
print(b*a)

除了对应元素相乘,数组还可以使用np.dot()函数相乘

a = np.random.randint(0,10,(2,3))
b = np.random.randint(0,10,3)
c = np.random.randint(0,10,(3,2))

print(np.dot(a,b))
print(np.dot(a,c))

属于数组而言,使用星号相乘和使用np.dot()函数相乘是完全不同的两种乘法:对于矩阵来说,不管是使用星号相乘还是使用np.dot()函数相乘,结果都是np.dot()函数相乘的结果,因为矩阵没有对应元素相乘这个概念。np.dot()函数实现的乘法就是矩阵乘法

不是所有的矩阵都能相乘,矩阵乘法不满足交换律。概括来说,就是矩阵A的各行逐一去乘矩阵B的各列。例如,矩阵A的第1行和矩阵B的第1列,它们的元素个数一定相等,对应元素相乘后求和的值作为结果矩阵第1行第1列的值。又如,矩阵A的第3行和矩阵B的第3列,对应元素相乘后求和的值作为结果矩阵第3行第3列的值。以此类推,最终得到矩阵A乘矩阵B的结果矩阵

到此这篇关于Python NumPy矩阵对象详解及方法的文章就介绍到这了,更多相关Python NumPy矩阵对象 内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python常用库Numpy进行矩阵运算详解

    Numpy支持大量的维度数组和矩阵运算,对数组运算提供了大量的数学函数库! Numpy比Python列表更具优势,其中一个优势便是速度.在对大型数组执行操作时,Numpy的速度比Python列表的速度快了好几百.因为Numpy数组本身能节省内存,并且Numpy在执行算术.统计和线性代数运算时采用了优化算法. Numpy的另一个强大功能是具有可以表示向量和矩阵的多维数组数据结构.Numpy对矩阵运算进行了优化,使我们能够高效地执行线性代数运算,使其非常适合解决机器学习问题. 与Python列表相比

  • python中numpy矩阵的零填充的示例代码

    目录 需求: 一.再new一个更大的所需要的矩阵大小 二.pad函数 其他想法 需求: 对于图像处理中的一些过程,我需要对读取的numpy矩阵进行size的扩充,比如原本是(4,6)的矩阵,现在需要上下左右各扩充3行,且为了不影响数值计算,都用0填充. 比如下图,我有一个4x5大小的全1矩阵,但是现在我要在四周都加上3行的0来扩充大小,最后扩充完还要对原区域进行操作. 方法: 想到了几种方法,记录一下. 一.再new一个更大的所需要的矩阵大小 a = np.ones((4,5)) #假设原矩阵是

  • Python Numpy实现计算矩阵的均值和标准差详解

    目录 一.前言 二.详解计算均值和标准差 三.实践:CRITIC权重法计算变异系数 一.前言 CRITIC权重法是一种比熵权法和标准离差法更好的客观赋权法: 它是基于评价指标的对比强度和指标之间的冲突性来综合衡量指标的客观权重.考虑指标变异性大小的同时兼顾指标之间的相关性,并非数字越大就说明越重要,完全利用数据自身的客观属性进行科学评价. 对比强度是指同一个指标各个评价方案之间取值差距的大小,以标准差的形式来表现.标准差越大,说明波动越大,即各方案之间的取值差距越大,权重会越高: 指标之间的冲突

  • Python numpy大矩阵运算内存不足如何解决

    程序运行,产生如下结果,然后进程终止,导致这一结果的原因很有可能是内存爆炸. 当两个较大的 (e.g., 10000*10000 维)ndarray 做运算(加法,or 乘法)时,很容易出现这样的结果. 解决办法: 大多数情况下,这种大矩阵都是稀疏的.尽可能地利用稀疏计算的方式,例如稀疏矩阵,或者只计算非 0 位置的值. 如果都是整数运算,可以设置 dtype=int,而非 dtype=float, 可以省下不少空间. linux 系统下,使用 top 命令,可以很容易地看到内存(%MEM) 的

  • Python:合并两个numpy矩阵的实现

    numpy是Python用来科学计算的一个非常重要的库,numpy主要用来处理一些矩阵对象,可以说numpy让Python有了Matlab的味道. 如何利用numpy来合并两个矩阵呢?我们可以利用numpy向我们提供的两个函数来进行操作. #hstack()在行上合并 np.hstack((a,b)) #vstack()在列上合并 np.vstack((a,b)) 以上a,b分别为两个numpy矩阵.hstack在行上合并,vstack在列上合并. 这篇Python:合并两个numpy矩阵的实现

  • Python+numpy实现矩阵的行列扩展方式

    对于numpy矩阵,行列扩展有三种比较常用的方法: 1.使用矩阵对象的c_方法扩展列,使用矩阵对象的r_方法扩展行. 2.使用numpy扩展库提供的insert()函数,使用axis参数指定行或列. 3.使用numpy扩展库的row_stack()函数扩展行,column_stack()函数扩展列. 以上这篇Python+numpy实现矩阵的行列扩展方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • Python中的Numpy 矩阵运算

    目录 在学习线性代数时我们所接触的矩阵之间的乘法是矩阵的叉乘,有这样一个前提: 若矩阵A是m*n阶的,B是p*q阶的矩阵,AB能相乘,首先得满足:n=p,即A的列数要等于B的行数.运算的方法如下图: 当时学线性代数时老师教的更为直观记法: 点乘则是这样: 假如有a,b两个矩阵,在Matlab中我们实现点乘和叉乘的方式分别如下: a.*b %表示点乘 a*b %表示叉乘 下面我们来看看python中的操作: import numpy as np a = np.arange(1, 10).resha

  • Python NumPy矩阵对象详解及方法

    目录 1. 介绍 2. 创建矩阵 3. 矩阵特有属性 4. 矩阵乘法 1. 介绍 在数学上,矩阵(Matrix)是一个按照矩形阵列排列的负数或实数集合,但在NumPy中,矩阵np.matrix是数组np.ndarray的派生类.这意味着矩阵本质上是   一个数组,拥有数组的所有属性和方法:同时,矩阵又有一些不同于数组的特性和方法首先,矩阵是二维的,不能像数组一样幻化成任意维度,即使展开或切片,返回也是二维的:其次,矩阵和矩阵.矩阵和数组都可以做加减乘除运算,运算结果都是返回矩阵:最后,矩阵的乘法

  • Python numpy.transpose使用详解

    前言 看Python代码时,碰见 numpy.transpose 用于高维数组时挺让人费解,通过一番画图分析和代码验证,发现 transpose 用法还是很简单的. 注:评论中说的三维坐标图中的 0 1 2 3 标反了,已经修正,感谢大家提醒(2019.02). 正文 Numpy 文档 numpy.transpose中做了些解释,transpose 作用是改变序列,下面是一些文档Examples: 代码1: x = np.arange(4).reshape((2,2)) 输出1: #x 为:ar

  • python继续找对象详解

    目录 面向对象三大特征:封装.继承.多态 1.封装(提高程序的安全性) 2.继承(提高代码的复用性) 3.方法重写 4.object类 5.多态(提高程序的可拓展性和可维护性) 6.特殊方法和特殊属性 特殊方法 两个特殊的方法----创建 特殊属性 pycharm使用的小发现 英文 总结 面向对象三大特征:封装.继承.多态 1.封装(提高程序的安全性) class Car: def __init__(self,brand): self.brand=brand def start(self): p

  • 基于Python Numpy的数组array和矩阵matrix详解

    NumPy的主要对象是同种元素的多维数组.这是一个所有的元素都是一种类型.通过一个正整数元组索引的元素表格(通常是元素是数字). 在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩,例子如下). 结果是: 线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵

  • 对python numpy数组中冒号的使用方法详解

    python中冒号实际上有两个意思:1.默认全部选择:2. 指定范围. 下面看例子 定义数组 X=array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20]]) 输出为5x4二维数组 第一种意思,默认全部选择: 如,X[:,0]就是取矩阵X的所有行的第0列的元素,X[:,1] 就是取所有行的第1列的元素 第二种意思,指定范围,注意这里含左不含右 如,X[:, m:n]即取矩阵X的所有行中的的第m到n-1列数据,含左不含右

  • Python NumPy教程之数据类型对象详解

    每个 ndarray 都有一个关联的数据类型 (dtype) 对象.这个数据类型对象(dtype)告诉我们数组的布局.这意味着它为我们提供了以下信息: 数据类型(整数.浮点数.Python 对象等) 数据大小(字节数) 数据的字节顺序(小端或大端) 如果数据类型是子数组,它的形状和数据类型是什么. ndarray 的值存储在缓冲区中,可以将其视为连续的内存字节块.所以这些字节将如何被解释由dtype对象给出. 构造数据类型(dtype)对象 数据类型对象是 numpy.dtype 类的一个实例,

  • Python可视化学习之seaborn绘制矩阵图详解

    目录 本文内容速览 1.绘图数据准备 2.seaborn.pairplot 加上分类变量 修改调色盘 x,y轴方向选取相同子集 x,y轴方向选取不同子集 非对角线散点图加趋势线 对角线上的四个图绘制方式 只显示网格下三角图形 图形外观设置 3.seaborn.PairGrid(更灵活的绘制矩阵图) 每个子图绘制同类型的图 对角线和非对角线分别绘制不同类型图 对角线上方.对角线.对角线下方分别绘制不同类型图 其它一些参数修改 本文内容速览 1.绘图数据准备 还是使用鸢尾花iris数据集 #导入本帖

  • Python中Numpy模块使用详解

    目录 NumPy ndarray对象 ​ ​Numpy数据类型​​ Numpy数组属性 NumPy NumPy(Numerical Python) 是 Python 的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Nupmy可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)).据说NumPy将Python相当于变成一种免费的更强大的MatLab系统.

  • C#动态对象(dynamic)详解(实现方法和属性的动态)

    C#的动态对象的属性实现比较简单,如果要实现动态语言那种动态方法就比较困难,因为对于dynamic对象,扩展方法,匿名方法都是不能用直接的,这里还是利用对象和委托来模拟这种动态方法的实现,看起来有点javascript的对象味道: 1) 定义一个委托,参数个数可变,参数都是object类型:这里的委托多有个dynamic参数,代表调用这个委托的动态对象本身. public delegate object MyDelegate(dynamic Sender, params object[] PMs

随机推荐