C++ Boost Utility超详细讲解

目录
  • 一、说明
  • 二、Boost.Utility库示例和代码

一、说明

Boost.Utility 库是杂项、有用的类和函数的集合,它们太小而无法在独立库中维护。虽然实用程序很小并且可以快速学习,但它们完全无关。与其他章节中的示例不同,此处的代码示例不是相互构建的,因为它们是独立的实用程序。

虽然大多数实用程序都在 boost/utility.hpp 中定义,但有些实用程序有自己的头文件。以下示例包括所介绍的实用程序的相应头文件。

二、Boost.Utility库示例和代码

示例 69.1。使用 boost::checked_delete()

#include <boost/checked_delete.hpp>
#include <boost/intrusive/list.hpp>
#include <string>
#include <utility>
#include <iostream>
struct animal : public boost::intrusive::list_base_hook<>
{
  std::string name_;
  int legs_;

  animal(std::string name, int legs) : name_{std::move(name)},
    legs_{legs} {}
};
int main()
{
  animal *a = new animal{"cat", 4};
  typedef boost::intrusive::list<animal> animal_list;
  animal_list al;
  al.push_back(*a);
  al.pop_back_and_dispose(boost::checked_delete<animal>);
  std::cout << al.size() << '\n';
}

Example 69.1

示例 69.1 将函数 boost::checked_delete() 作为参数传递给成员函数 pop_back_and_dispose(),该函数由 Boost.Intrusive 的类 boost::intrusive::list 提供。 boost::intrusive::list 和 pop_back_and_dispose() 在第 18 章中介绍,而 boost::checked_delete() 由 Boost.Utility 提供并在 boost/checked_delete.hpp 中定义。

boost::checked_delete() 期望作为其唯一参数的指针指向将被 delete 删除的对象。因为 pop_back_and_dispose() 需要一个函数来销毁相应的对象,所以传入 boost::checked_delete() 是有意义的——这样,您就不需要定义类似的函数。

与 delete 不同,boost::checked_delete() 确保要销毁的对象的类型是完整的。 delete 将接受指向具有不完整类型的对象的指针。虽然这涉及您通常可以忽略的 C++ 标准细节,但您应该注意 boost::checked_delete() 与调用 delete 并不完全相同,因为它对其参数提出了更高的要求。

Boost.Utility 还提供了 boost::checked_array_delete(),可用于销毁数组。它调用 delete[] 而不是 delete。

此外,boost::checked_deleter 和 boost::checked_array_deleter 这两个类可用于创建行为分别类似于 boost::checked_delete() 和 boost::checked_array_delete() 的函数对象。

示例 69.2。使用 BOOST_CURRENT_FUNCTION

#include <boost/current_function.hpp>
#include <iostream>
int main()
{
  const char *funcname = BOOST_CURRENT_FUNCTION;
  std::cout << funcname << '\n';
}

Example 69.2

示例 69.2 使用在 boost/current_function.hpp 中定义的宏 BOOST_CURRENT_FUNCTION 将周围函数的名称作为字符串返回。

BOOST_CURRENT_FUNCTION 提供了一种独立于平台的方法来检索函数的名称。从 C++11 开始,您可以使用标准化宏 __func__ 做同样的事情。在 C++11 之前,Visual C++ 和 GCC 等编译器支持宏 __FUNCTION__ 作为扩展。 BOOST_CURRENT_FUNCTION 使用编译器支持的任何宏。

如果使用 Visual C++ 2013 编译,示例 69.2 显示 int __cdecl main(void)。

示例 69.3。使用 boost::prior() 和 boost::next()

#include <boost/next_prior.hpp>
#include <array>
#include <algorithm>
#include <iostream>
int main()
{
  std::array<char, 4> a{{'a', 'c', 'b', 'd'}};
  auto it = std::find(a.begin(), a.end(), 'b');
  auto prior = boost::prior(it, 2);
  auto next = boost::next(it);
  std::cout << *prior << '\n';
  std::cout << *it << '\n';
  std::cout << *next << '\n';
}

Boost.Utility 提供了两个函数,boost::prior() 和 boost::next(),它们返回一个相对于另一个迭代器的迭代器。在示例 69.3 中,它指向数组中的“b”,prior 指向“a”,然后指向“d”。

与 std::advance() 不同,boost::prior() 和 boost::next() 返回一个新的迭代器并且不修改传入的迭代器。

除了迭代器之外,这两个函数都接受第二个参数,该参数指示向前或向后移动的步数。在示例 69.3 中,迭代器在对 boost::prior() 的调用中向后移动了两步,在对 boost::next() 的调用中向前移动了一步。

步数始终为正数,即使对于向后移动的 boost::prior() 也是如此。

要使用 boost::prior() 和 boost::next(),请包含头文件 boost/next_prior.hpp。

这两个函数都被添加到 C++11 的标准库中,它们被称为 std::prev() 和 std::next()。它们在头文件迭代器中定义。

示例 69.4。使用 boost::noncopyable

#include <boost/noncopyable.hpp>
#include <string>
#include <utility>
#include <iostream>
struct animal : boost::noncopyable
{
  std::string name;
  int legs;
  animal(std::string n, int l) : name{std::move(n)}, legs{l} {}
};
void print(const animal &a)
{
  std::cout << a.name << '\n';
  std::cout << a.legs << '\n';
}
int main()
{
  animal a{"cat", 4};
  print(a);
}

Boost.Utility 提供类 boost::noncopyable,它在 boost/noncopyable.hpp 中定义。此类使复制(和移动)对象变得不可能。

通过将复制构造函数和赋值运算符定义为私有成员函数,或者从 C++11 开始,通过使用 delete 删除复制构造函数和赋值运算符,可以达到相同的效果。然而,从 boost::noncopyable 派生明确说明类的对象应该是不可复制的。

注意:

一些开发人员更喜欢 boost::noncopyable,而其他开发人员更喜欢使用 delete 显式删除成员函数。您会在 Stack Overflow 等地方找到这两种方法的论点。

可以编译和执行示例 69.4。但是,如果将 print() 函数的签名修改为按值而不是按引用获取动物类型的对象,则生成的代码将不再编译。

示例 69.5。使用 boost::addressof()

#include <boost/utility/addressof.hpp>
#include <string>
#include <iostream>
struct animal
{
  std::string name;
  int legs;
  int operator&() const { return legs; }
};
int main()
{
  animal a{"cat", 4};
  std::cout << &a << '\n';
  std::cout << boost::addressof(a) << '\n';
}

为了检索特定对象的地址,即使运算符 & 已被重载,Boost.Utility 提供了函数 boost::addressof(),它在 boost/utility/addressof.hpp 中定义(参见示例 69.5)。在 C++11 中,此函数成为标准库的一部分,并在头文件内存中作为 std::addressof() 提供。

示例 69.6。使用 BOOST_BINARY

#include <boost/utility/binary.hpp>
#include <iostream>
int main()
{
  int i = BOOST_BINARY(1001 0001);
  std::cout << i << '\n';
  short s = BOOST_BINARY(1000 0000 0000 0000);
  std::cout << s << '\n';
}

宏 BOOST_BINARY 允许您创建二进制形式的数字。标准 C++ 仅支持十六进制和八进制形式,使用前缀 0x 和 0。C++11 引入了用户定义文字,允许您定义自定义后缀,但在 C+ 中仍然没有以二进制形式使用数字的标准方法+11。

示例 69.6 显示 145 和 -32768。 s 中存储的位序列表示一个负数,因为 16 位类型的 short 使用第 16 位——short 中的最高有效位——作为符号位。

BOOST_BINARY 只是提供了另一种写数字的选项。因为在 C++ 中,数字的默认类型是 int,所以 BOOST_BINARY 也使用 int。要定义一个 long 类型的数字,请使用宏 BOOST_BINARY_L,它生成等同于以字母 L 为后缀的数字。

Boost.Utility 包括额外的宏,例如 BOOST_BINARY_U,它初始化一个没有符号位的变量。所有这些宏都在头文件 boost/utility/binary.hpp 中定义。

示例 69.7。使用 boost::string_ref

#include <boost/utility/string_ref.hpp>
#include <iostream>
boost::string_ref start_at_boost(boost::string_ref s)
{
  auto idx = s.find("Boost");
  return (idx != boost::string_ref::npos) ? s.substr(idx) : "";
}
int main()
{
  boost::string_ref s = "The Boost C++ Libraries";
  std::cout << start_at_boost(s) << '\n';
}

Example 69.7

示例 69.7 引入了类 boost::string_ref,它是对仅支持读取访问的字符串的引用。在某种程度上,该引用可与 const std::string& 相媲美。然而,const std::string& 要求存在一个 std::string 类型的对象。 boost::string_ref 也可以在没有 std::string 的情况下使用。 boost::string_ref 的好处是,与 std::string 不同,它不需要分配内存。

示例 69.7 在字符串中查找单词“Boost”。如果找到,将显示以该词开头的字符串。如果未找到“Boost”一词,则会显示一个空字符串。 main() 中字符串 s 的类型不是 std::string,而是 boost::string_ref。因此,没有内存分配给 new,也没有创建副本。 s 直接指向文字字符串“The Boost C++ Libraries”。

start_at_boost() 的返回值类型是 boost::string_ref,而不是 std::string。该函数不返回新字符串,它返回一个引用。此引用指向参数的子字符串或空字符串。 start_at_boost() 要求原始字符串在使用 boost::string_ref 类型的引用时保持有效。如果可以保证这一点,如示例 69.7 所示,则可以避免内存分配。

还可以使用其他实用程序,但它们超出了本书的范围,因为它们主要由 Boost 库的开发人员使用或用于模板元编程。 Boost.Utility 的文档提供了这些附加实用程序的相当全面的概述,如果您有兴趣,可以作为起点。

到此这篇关于C++ Boost Utility超详细讲解的文章就介绍到这了,更多相关C++ Boost Utility内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++ Boost Uuid超详细讲解

    目录 一.说明 二.Boost.Uuid库示例和代码 一.说明 Boost.Uuid 为 UUID 提供生成器. UUID 是不依赖于中央协调实例的通用唯一标识符.例如,没有数据库存储所有生成的 UUID,可以检查这些 UUID 是否使用了新的 UUID. UUID 由必须唯一标识组件的分布式系统使用.例如,Microsoft 使用 UUID 来识别 COM 世界中的接口.对于为 COM 开发的新接口,可以轻松分配唯一标识符. UUID 是 128 位数字.存在多种生成 UUID 的方法.例如,

  • C++ Boost ProgramOptions超详细讲解

    目录 一.说明 二.示例Boost.ProgramOptions 一.说明 Boost.ProgramOptions Boost.ProgramOptions 是一个可以轻松解析命令行选项的库,例如,控制台应用程序.如果您使用图形用户界面开发应用程序,命令行选项通常并不重要. 要使用 Boost.ProgramOptions 解析命令行选项,需要以下三个步骤: 定义命令行选项.您给它们命名并指定哪些可以设置为一个值.如果命令行选项被解析为键/值对,您还可以设置值的类型——例如,它是字符串还是数字

  • C++ Boost.Signals2信号/槽概念

    目录 一.关于Boost.Signals2 二.关于Signals库 练习 一.关于Boost.Signals2 Boost.Signals2 实现了信号/槽的概念.一个或多个函数(称为槽)与可以发出信号的对象相关联.每次发出信号时,都会调用链接的函数. 信号/槽概念在开发具有图形用户界面的应用程序时非常有用.可以对按钮进行建模,以便在用户单击它们时发出信号.它们可以支持指向许多函数的链接以处理用户输入.这样就可以灵活地处理事件. std::function 也可用于事件处理. std::fun

  • C++ Boost MetaStateMachine定义状态机超详细讲解

    目录 一.说明 二.示例和代码 一.说明 Boost.MetaStateMachine 用于定义状态机.状态机通过对象的状态来描述对象.它们描述了存在哪些状态以及状态之间可能存在哪些转换. Boost.MetaStateMachine 提供了三种不同的方式来定义状态机.创建状态机所需编写的代码取决于前端. 如果使用基本前端或函数前端,则可以用常规方式定义状态机:创建类,从 Boost.MetaStateMachine 提供的其他类派生它们,定义所需的成员变量,并编写所需的 C++自己编码.基本前

  • C++ Boost Assign超详细讲解

    目录 说明 Exercise 说明 Boost.Assign Boost.Assign 库提供了帮助函数来初始化容器或向容器添加元素.如果需要将许多元素存储在一个容器中,这些函数尤其有用.多亏了 Boost.Assign 提供的函数,您不需要重复调​​用像 push_back() 这样的成员函数来将元素一个一个地插入到容器中. 如果您使用支持 C++11 的开发环境,则可以从初始化列表中获益.通常您可以将任意数量的值传递给构造函数来初始化容器.多亏了初始化列表,你不必依赖 C++11 的 Boo

  • C++ Boost Flyweight库使用介绍

    目录 一.说明 二.库Boost.Flyweight 炼习 一.说明 以下库用于设计模式. Boost.Flyweight 有助于在程序中使用许多相同的对象并且需要减少内存消耗的情况. Boost.Signals2 使得使用观察者设计模式变得容易.这个库被称为 Boost.Signals2 因为它实现了信号/槽的概念. Boost.MetaStateMachine 使得将状态机从 UML 转移到 C++ 成为可能. 本节内容 66. Boost.Flyweight 67. Boost.Signa

  • C++ Boost Archive超详细讲解

    目录 一.说明 二.关于Archive库 一.说明 对Boost.Serialization库的应用,存在如下内容: Archive Pointers and References Serialization of Class Hierarchy Objects Wrapper Functions for Optimization Boost.Serialization 库可以将 C++ 程序中的对象转换为可以保存和加载以恢复对象的字节序列.有不同的数据格式可用于定义生成字节序列的规则. Boo

  • C++ Boost Utility超详细讲解

    目录 一.说明 二.Boost.Utility库示例和代码 一.说明 Boost.Utility 库是杂项.有用的类和函数的集合,它们太小而无法在独立库中维护.虽然实用程序很小并且可以快速学习,但它们完全无关.与其他章节中的示例不同,此处的代码示例不是相互构建的,因为它们是独立的实用程序. 虽然大多数实用程序都在 boost/utility.hpp 中定义,但有些实用程序有自己的头文件.以下示例包括所介绍的实用程序的相应头文件. 二.Boost.Utility库示例和代码 示例 69.1.使用

  • C++ Boost ScopeExit超详细讲解

    目录 一.提要 二.退出作用域(Boost.ScopeExit) 2.1 范例1.UsingBOOST_SCOPE_EXIT 2.2 示例2.Boost.ScopeExit和C++11的lambda函数 2.3 示例3.特点BOOST_SCOPE_EXIT 三.练习 一.提要 资源有很多种,每种都封装一套,还是挺繁琐的!对于比较少使用或者一个程序很可能只会用一次的资源,我们不想封装,在这种情况下用Boost.ScopeExit. 二.退出作用域(Boost.ScopeExit) 库 Boost.

  • C++ Boost Lockfree超详细讲解使用方法

    目录 一.说明 二.示例和代码 Boost.Lockfree 一.说明 Boost.Lockfree 提供线程安全和无锁容器.可以从多个线程访问此库中的容器,而无需同步访问. 在 1.56.0 版本中,Boost.Lockfree 只提供了两个容器:boost::lockfree::queue 类型的队列和 boost::lockfree::stack 类型的栈.对于队列,可以使用第二个实现:boost::lockfree::spsc_queue.此类针对只有一个线程写入队列和只有一个线程从队列

  • C++ Boost System超详细讲解

    目录 一.说明 二.关于 Boost.System库 一.说明 以下库支持错误处理. Boost.System 提供类来描述和识别错误.自 C++11 以来,这些类已成为标准库的一部分. Boost.Exception 使得在抛出异常后附加数据成为可能. 二.关于 Boost.System库 Boost.System Boost.System 是一个库,本质上定义了四个类来识别错误.所有四个类都已添加到 C++11 的标准库中.如果您的开发环境支持 C++11,则无需使用 Boost.Syste

  • C++ Boost Format超详细讲解

    Boost.Format Boost.Format 提供了函数 std::printf() 的替代品. std::printf() 源自 C 标准并允许格式化数据输出.但是,它既不是类型安全的,也不是可扩展的. Boost.Format 提供了一种类型安全且可扩展的替代方案. Boost.Format 提供了一个名为 boost::format 的类,该类在 boost/format.hpp 中定义.与 std::printf() 类似,将包含用于控制格式的特殊字符的字符串传递给 boost::

  • C++ Boost Exception超详细讲解

    Boost.Exception 库提供了一种新的异常类型 boost::exception,它允许您在抛出异常后将数据添加到异常中.此类型在 boost/exception/exception.hpp 中定义.由于 Boost.Exception 将其类和函数分布在多个头文件中,以下示例访问主头文件 boost/exception/all.hpp 以避免一个接一个地包含头文件. Boost.Exception 支持 C++11 标准的机制,该机制将异常从一个线程传输到另一个线程. boost::

随机推荐