Python基于jieba分词实现snownlp情感分析

情感分析(sentiment analysis)是2018年公布的计算机科学技术名词。

它可以根据文本内容判断出所代表的含义是积极的还是负面的,也可以用来分析文本中的意思是褒义还是贬义。

一般应用场景就是能用来做电商的大量评论数据的分析,比如好评率或者差评率的统计等等。

我们这里使用到的情感分析的模块是snownlp,为了提高情感分析的准确度选择加入了jieba模块的分词处理。

由于以上的两个python模块都是非标准库,因此我们可以使用pip的方式进行安装。

pip install jieba

pip install snownlp

jieba是一个强大的中文分词处理库,能够满足大多数的中文分词处理,协助snownlp的情感分析。

# Importing the jieba module and renaming it to ja.
import jieba as ja
from snownlp import SnowNLP

# Importing the snownlp module and renaming it to nlp.

为了避免大家使用过程中出现的版本冲突问题,这里将python的内核版本展示出来。

python解释器版本:3.6.8

接下来首先创建一组需要进行情感分的数据源,最后直接分析出该文本代表的是一个积极情绪还是消极情绪。

# Creating a variable called analysis_text and assigning it the value of a string.
analysis_text = '这个实在是太好用了,我非常的喜欢,下次一定还会购买的!'

定义好了需要分析的数据来源语句,然后就是分词处理了。这里说明一下为什么需要分词处理,是因为snownlp这个情感分析模块它的中文分词结果不太标准。

比如说,'不好看',这个词如果使用snownlp来直接分词的话大概率的就会分为'不'和'好看'这两个词。

这样的明明是一个带有负面情绪的中文词汇可能就直接被定义为正面情绪了,这也就是为什么这里需要先使用jieba进行分词处理了。

# Using the jieba module to cut the analysis_text into a list of words.
analysis_list = list(ja.cut(analysis_text))

# Printing the list of words that were cut from the analysis_text.
print(analysis_list)

# ['这个', '实在', '是', '太', '好', '用', '了', ',', '我', '非常', '的', '喜欢', ',', '下次', '一定', '还会', '购买', '的', '!']

根据上面分词以后的结果来看,分词的粒度还是比较细致的,每个词都是最多两个字符串的长度。

使用jieba提供的cut()函数,关键词已经分割完成了,接着就是提取主要的关键字。

一般情况下我们做情感分析都会提取形容词类型的关键字,因为形容词能够代表该文本所表现出来的情绪。

# Importing the `posseg` module from the `jieba` module and renaming it to `seg`.
import jieba.posseg as seg

# This is a list comprehension that is creating a list of tuples. Each tuple contains the word and the flag.
analysis_words = [(word.word, word.flag) for word in seg.cut(analysis_text)]

# Printing the list of tuples that were created in the list comprehension.
print(analysis_words)

# [('这个', 'r'), ('实在', 'v'), ('是', 'v'), ('太', 'd'), ('好用', 'v'), ('了', 'ul'), (',', 'x'), ('我', 'r'), ('非常', 'd'), ('的', 'uj'), ('喜欢', 'v'), (',', 'x'), ('下次', 't'), ('一定', 'd'), ('还', 'd'), ('会', 'v'), ('购买', 'v'), ('的', 'uj'), ('!', 'x')]

根据上面的python推导式,将分词以后的关键字和该关键自对应的词性提取出来。

下面是一份jieba模块使用过程中对应的词性表,比如词性标记a代表的就是形容词。

# This is a list comprehension that is creating a list of tuples. Each tuple contains the word and the flag.
keywords = [x for x in analysis_words if x[1] in ['a', 'd', 'v']]

# Printing the list of tuples that were created in the list comprehension.
print(keywords)

# [('实在', 'v'), ('是', 'v'), ('太', 'd'), ('好用', 'v'), ('非常', 'd'), ('喜欢', 'v'), ('一定', 'd'), ('还', 'd'), ('会', 'v'), ('购买', 'v')]

根据关键词的标签提取出关键字以后,这个时候可以将情感标记去除只保留关键字就可以了。

# This is a list comprehension that is creating a list of words.
keywords = [x[0] for x in keywords]

# Printing the list of keywords that were created in the list comprehension.
print(keywords)

# ['实在', '是', '太', '好用', '非常', '喜欢', '一定', '还', '会', '购买']

到现在为至,分词的工作已经处理完了,接下来就是情感分析直接使用snownlp分析出结果。

# Creating a variable called `pos_num` and assigning it the value of 0.
pos_num = 0

# Creating a variable called `neg_num` and assigning it the value of 0.
neg_num = 0

# This is a for loop that is looping through each word in the list of keywords.
for word in keywords:
    # Creating a variable called `sl` and assigning it the value of the `SnowNLP` function.
    sl = SnowNLP(word)
    # This is an if statement that is checking to see if the sentiment of the word is greater than 0.5.
    if sl.sentiments > 0.5:
        # Adding 1 to the value of `pos_num`.
        pos_num = pos_num + 1
    else:
        # Adding 1 to the value of `neg_num`.
        neg_num = neg_num + 1
    # This is printing the word and the sentiment of the word.
    print(word, str(sl.sentiments))

下面就是对原始文本提取关键词以后的每个词的情感分析结果,0-1之间代表情绪越接近于1代表情绪表现的越是积极向上。

# 实在 0.3047790802524796
# 是 0.5262327818078083
# 太 0.34387502381406
# 好用 0.6558628208940429
# 非常 0.5262327818078083
# 喜欢 0.6994590939824207
# 一定 0.5262327818078083
# 还 0.5746682977321914
# 会 0.5539033457249072
# 购买 0.6502590673575129

为了使得关键词的分析结果更加的符合我们的想法也可以对负面和正面的关键词进行统计得到一个结果。

# This is a string that is using the `format` method to insert the value of `pos_num` into the string.
print('正面情绪关键词数量:{}'.format(pos_num))

# This is a string that is using the `format` method to insert the value of `neg_num` into the string.
print('负面情绪关键词数量:{}'.format(neg_num))

# This is a string that is using the `format` method to insert the value of `pos_num` divided by the value of `pos_num`
# plus the value of `neg_num` into the string.
print('正面情绪所占比例:{}'.format(pos_num/(pos_num + neg_num)))

# 正面情绪关键词数量:8
# 负面情绪关键词数量:2
# 正面情绪所占比例:0.8

以上就是Python基于jieba分词实现snownlp情感分析的详细内容,更多关于Python snownlp情感分析的资料请关注我们其它相关文章!

(0)

相关推荐

  • 利用python实现简单的情感分析实例教程

    目录 1 数据导入及预处理 1.1 数据导入 1.2 数据描述 1.3 数据预处理 2 情感分析 2.1 情感分 2.2 情感分直方图 2.3 词云图 2.4 关键词提取 3 积极评论与消极评论 3.1 积极评论与消极评论占比 3.2 消极评论分析 总结 python实现简单的情感分析 1 数据导入及预处理 1.1 数据导入 # 数据导入 import pandas as pd data = pd.read_csv('../data/京东评论数据.csv') data.head() 1.2 数据

  • python 爬取京东指定商品评论并进行情感分析

    项目地址 https://github.com/DA1YAYUAN/JD-comments-sentiment-analysis 爬取京东商城中指定商品下的用户评论,对数据预处理后基于SnowNLP的sentiment模块对文本进行情感分析. 运行环境 Mac OS X Python3.7 requirements.txt Pycharm 运行方法 数据爬取(jd.comment.py) 启动jd_comment.py,建议修改jd_comment.py中变量user-agent为自己浏览器用户

  • Python实现购物评论文本情感分析操作【基于中文文本挖掘库snownlp】

    本文实例讲述了Python实现购物评论文本情感分析操作.分享给大家供大家参考,具体如下: 昨晚上发现了snownlp这个库,很开心.先说说我开心的原因.我本科毕业设计做的是文本挖掘,用R语言做的,发现R语言对文本处理特别不友好,没有很多强大的库,特别是针对中文文本的,加上那时候还没有学机器学习算法.所以很头疼,后来不得已用了一个可视化的软件RostCM,但是一般可视化软件最大的缺点是无法调参,很死板,准确率并不高.现在研一,机器学习算法学完以后,又想起来要继续学习文本挖掘了.所以前半个月开始了用

  • python snownlp情感分析简易demo(分享)

    SnowNLP是国人开发的python类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob不同的是,这里没有用NLTK,所有的算法都是自己实现的,并且自带了一些训练好的字典.注意本程序都是处理的unicode编码,所以使用时请自行decode成unicode.MIT许可下发行. 其 github主页 我自己修改了上文链接中的python代码并加入些许注释,以方便你的理解:

  • python使用Word2Vec进行情感分析解析

    python实现情感分析(Word2Vec) ** 前几天跟着老师做了几个项目,老师写的时候劈里啪啦一顿敲,写了个啥咱也布吉岛,线下自己就瞎琢磨,终于实现了一个最简单的项目.输入文本,然后分析情感,判断出是好感还是反感.看最终结果:↓↓↓↓↓↓ 1 2 大概就是这样,接下来实现一下. 实现步骤 加载数据,预处理 数据就是正反两类,保存在neg.xls和pos.xls文件中, 数据内容类似购物网站的评论,分别有一万多个好评和一万多个差评,通过对它们的处理,变成我们用来训练模型的特征和标记. 首先导

  • Python基于jieba分词实现snownlp情感分析

    情感分析(sentiment analysis)是2018年公布的计算机科学技术名词. 它可以根据文本内容判断出所代表的含义是积极的还是负面的,也可以用来分析文本中的意思是褒义还是贬义. 一般应用场景就是能用来做电商的大量评论数据的分析,比如好评率或者差评率的统计等等. 我们这里使用到的情感分析的模块是snownlp,为了提高情感分析的准确度选择加入了jieba模块的分词处理. 由于以上的两个python模块都是非标准库,因此我们可以使用pip的方式进行安装. pip install jieba

  • Python基于jieba库进行简单分词及词云功能实现方法

    本文实例讲述了Python基于jieba库进行简单分词及词云功能实现方法.分享给大家供大家参考,具体如下: 目标: 1.导入一个文本文件 2.使用jieba对文本进行分词 3.使用wordcloud包绘制词云 环境: Python 3.6.0 |Anaconda 4.3.1 (64-bit) 工具: jupyter notebook 从网上下载了一篇小说<老九门>,以下对这篇小说进行分词,并绘制词云图. 分词使用最流行的分词包jieba,参考:https://github.com/fxsjy/

  • Python基于opencv的图像压缩算法实例分析

    本文实例讲述了Python基于opencv的图像压缩算法.分享给大家供大家参考,具体如下: 插值方法: CV_INTER_NN - 最近邻插值, CV_INTER_LINEAR - 双线性插值 (缺省使用) CV_INTER_AREA - 使用象素关系重采样.当图像缩小时候,该方法可以避免波纹出现.当图像放大时,类似于 CV_INTER_NN 方法.. CV_INTER_CUBIC - 立方插值. 函数 cvResize 将图像 src 改变尺寸得到与 dst 同样大小.若设定 ROI,函数将按

  • Python基于多线程操作数据库相关问题分析

    本文实例分析了Python多线程操作数据库相关问题.分享给大家供大家参考,具体如下: python多线程并发操作数据库,会存在链接数据库超时.数据库连接丢失.数据库操作超时等问题. 解决方法:使用数据库连接池,并且每次操作都从数据库连接池获取数据库操作句柄,操作完关闭连接返回数据库连接池. *连接数据库需要设置charset = 'utf8', use_unicode = True,不然会报中文乱码问题 *网上说解决python多线程并发操作数据库问题,连接时使用self.conn.ping(T

  • Python基于jieba, wordcloud库生成中文词云

    代码如下 import wordcloud import jieba font = r'C:\Windows\Fonts\simfang.ttf' w = wordcloud.WordCloud(height = 700, width = 1000, font_path=font, \ stopwords=['et','al', 'Crampin', 'and','the', 'Liu'], max_words=30) with open('NSFC.txt', 'r') as f: txt =

  • 基于python + django + whoosh + jieba 分词器实现站内检索功能

    基于 python django 源码 前期准备 安装库: pip install django-haystack pip install whoosh pip install jieba 如果pip 安装超时,可配置pip国内源下载,如下: pip install -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com <安装的库> pip install -i http://mirrors.al

  • 浅谈python jieba分词模块的基本用法

    jieba(结巴)是一个强大的分词库,完美支持中文分词,本文对其基本用法做一个简要总结. 特点 支持三种分词模式: 精确模式,试图将句子最精确地切开,适合文本分析: 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义: 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词. 支持繁体分词 支持自定义词典 MIT 授权协议 安装jieba pip install jieba 简单用法 结巴分词分为三种模式:精确模式(默认).全模式和搜索引擎

随机推荐