解析Java的设计模式编程之解释器模式的运用

定义:给定一种语言,定义他的文法的一种表示,并定义一个解释器,该解释器使用该表示来解释语言中句子。
类型:行为类模式
类图:

解释器模式是一个比较少用的模式,本人之前也没有用过这个模式。下面我们就来一起看一下解释器模式。
 
解释器模式的结构
抽象解释器:声明一个所有具体表达式都要实现的抽象接口(或者抽象类),接口中主要是一个interpret()方法,称为解释操作。具体解释任务由它的各个实现类来完成,具体的解释器分别由终结符解释器TerminalExpression和非终结符解释器NonterminalExpression完成。
终结符表达式:实现与文法中的元素相关联的解释操作,通常一个解释器模式中只有一个终结符表达式,但有多个实例,对应不同的终结符。终结符一半是文法中的运算单元,比如有一个简单的公式R=R1+R2,在里面R1和R2就是终结符,对应的解析R1和R2的解释器就是终结符表达式。                               
非终结符表达式:文法中的每条规则对应于一个非终结符表达式,非终结符表达式一般是文法中的运算符或者其他关键字,比如公式R=R1+R2中,+就是非终结符,解析+的解释器就是一个非终结符表达式。非终结符表达式根据逻辑的复杂程度而增加,原则上每个文法规则都对应一个非终结符表达式。
环境角色:这个角色的任务一般是用来存放文法中各个终结符所对应的具体值,比如R=R1+R2,我们给R1赋值100,给R2赋值200。这些信息需要存放到环境角色中,很多情况下我们使用Map来充当环境角色就足够了。

例子
来举一个加减乘除的例子吧,实现思路来自于《java与模式》中的例子。每个角色的功能按照上面提到的规范来实现。

//上下文(环境)角色,使用HashMap来存储变量对应的数值 

class Context 

{ 

    private Map valueMap = new HashMap(); 

    public void addValue(Variable x , int y) 

    { 

       Integer yi = new Integer(y); 

       valueMap.put(x , yi); 

    } 

    public int LookupValue(Variable x) 

    { 

       int i = ((Integer)valueMap.get(x)).intValue(); 

       return i ; 

    } 

} 

//抽象表达式角色,也可以用接口来实现 

abstract class Expression 

{ 

    public abstract int interpret(Context con); 

} 

//终结符表达式角色 

class Constant extends Expression 

{ 

    private int i ; 

    public Constant(int i) 

    { 

       this.i = i; 

    } 

    public int interpret(Context con) 

    { 

       return i ; 

    } 

} 

class Variable extends Expression 

{ 

    public int interpret(Context con) 

    { 

       //this为调用interpret方法的Variable对象 

       return con.LookupValue(this); 

    } 

} 

//非终结符表达式角色 

class Add extends Expression 

{ 

    private Expression left ,right ; 

    public Add(Expression left , Expression right) 

    { 

       this.left = left ; 

       this.right= right ; 

    } 

    public int interpret(Context con) 

    { 

       return left.interpret(con) + right.interpret(con); 

    } 

} 

class Subtract extends Expression 

{ 

    private Expression left , right ; 

    public Subtract(Expression left , Expression right) 

    { 

       this.left = left ; 

       this.right= right ; 

    } 

    public int interpret(Context con) 

    { 

       return left.interpret(con) - right.interpret(con); 

    } 

} 

class Multiply extends Expression 

{ 

    private Expression left , right ; 

    public Multiply(Expression left , Expression right) 

    { 

       this.left = left ; 

       this.right= right ; 

    } 

    public int interpret(Context con) 

    { 

       return left.interpret(con) * right.interpret(con); 

    } 

} 

class Division extends Expression 

{ 

    private Expression left , right ; 

    public Division(Expression left , Expression right) 

    { 

       this.left = left ; 

       this.right= right ; 

    } 

    public int interpret(Context con) 

    { 

       try{ 

              return left.interpret(con) / right.interpret(con); 

       }catch(ArithmeticException ae) 

       { 

           System.out.println("被除数为0!"); 

           return -11111; 

       } 

    } 

} 

//测试程序,计算 (a*b)/(a-b+2) 

public class Test 

{ 

    private static Expression ex ; 

    private static Context con ; 

    public static void main(String[] args) 

    { 

       con = new Context(); 

       //设置变量、常量 

       Variable a = new Variable(); 

       Variable b = new Variable(); 

       Constant c = new Constant(2); 

//为变量赋值 

       con.addValue(a , 5); 

       con.addValue(b , 7); 

//运算,对句子的结构由我们自己来分析,构造 

       ex = new Division(new Multiply(a , b), new Add(new Subtract(a , b) , c)); 

       System.out.println("运算结果为:"+ex.interpret(con)); 

    } 

}

解释器模式的优缺点
        解释器是一个简单的语法分析工具,它最显著的优点就是扩展性,修改语法规则只需要修改相应的非终结符就可以了,若扩展语法,只需要增加非终结符类就可以了。
        但是,解释器模式会引起类的膨胀,每个语法都需要产生一个非终结符表达式,语法规则比较复杂时,就可能产生大量的类文件,为维护带来非常多的麻烦。同时,由于采用递归调用方法,每个非终结符表达式只关心与自己相关的表达式,每个表达式需要知道最终的结果,必须通过递归方式,无论是面向对象的语言还是面向过程的语言,递归都是一个不推荐的方式。由于使用了大量的循环和递归,效率是一个不容忽视的问题。特别是用于解释一个解析复杂、冗长的语法时,效率是难以忍受的。
 
解释器模式的适用场景
        在以下情况下可以使用解释器模式:
有一个简单的语法规则,比如一个sql语句,如果我们需要根据sql语句进行rm转换,就可以使用解释器模式来对语句进行解释。
一些重复发生的问题,比如加减乘除四则运算,但是公式每次都不同,有时是a+b-c*d,有时是a*b+c-d,等等等等个,公式千变万化,但是都是由加减乘除四个非终结符来连接的,这时我们就可以使用解释器模式。

注意事项
       解释器模式真的是一个比较少用的模式,因为对它的维护实在是太麻烦了,想象一下,一坨一坨的非终结符解释器,假如不是事先对文法的规则了如指掌,或者是文法特别简单,则很难读懂它的逻辑。解释器模式在实际的系统开发中使用的很少,因为他会引起效率、性能以及维护等问题。

(0)

相关推荐

  • JAVA设计模式之解释器模式详解

    在阎宏博士的<JAVA与模式>一书中开头是这样描述解释器(Interpreter)模式的: 解释器模式是类的行为模式.给定一个语言之后,解释器模式可以定义出其文法的一种表示,并同时提供一个解释器.客户端可以使用这个解释器来解释这个语言中的句子. 解释器模式的结构 下面就以一个示意性的系统为例,讨论解释器模式的结构.系统的结构图如下所示: 模式所涉及的角色如下所示: (1)抽象表达式(Expression)角色:声明一个所有的具体表达式角色都需要实现的抽象接口.这个接口主要是一个interpre

  • Java设计模式之解释器模式_动力节点Java学院整理

    定义:给定一种语言,定义他的文法的一种表示,并定义一个解释器,该解释器使用该表示来解释语言中句子. 类型:行为类模式 类图: 解释器模式是一个比较少用的模式,本人之前也没有用过这个模式.下面我们就来一起看一下解释器模式. 解释器模式的结构 抽象解释器:声明一个所有具体表达式都要实现的抽象接口(或者抽象类),接口中主要是一个interpret()方法,称为解释操作.具体解释任务由它的各个实现类来完成,具体的解释器分别由终结符解释器TerminalExpression和非终结符解释器Nonterm

  • Java设计模式之解释器模式(Interpreter模式)介绍

    Interpreter定义:定义语言的文法,并且建立一个解释器来解释该语言中的句子. Interpreter似乎使用面不是很广,它描述了一个语言解释器是如何构成的,在实际应用中,我们可能很少去构造一个语言的文法.我们还是来简单的了解一下. 首先要建立一个接口,用来描述共同的操作. 复制代码 代码如下: public interface AbstractExpression { void interpret( Context context );     } 再看看包含解释器之外的一些全局信息 复

  • Java设计模式编程之解释器模式的简单讲解

    0.解释器(Interpreter)模式定义 : 给定一门语言,定义它的文法的一种表示,并定义一个解释器,该解释器使用该表示来解释语言中句子. 属于行为型模式. 解释器模式在实际的系统开发中使用的非常少,因为它会引起效率.性能以及维护等问题. 解释器模式的通用类图如图所示. 1.解释器模式的优点 解释器是一个简单语法分析工具,它最显著的优点就是扩展性,修改语法规则只要修改相应的非终结符表达式就可以了,若扩展语法,则只要增加非终结符类就可以了. 2.解释器模式的缺点 解释器模式会引起类膨胀:每个语

  • 解析Java的设计模式编程之解释器模式的运用

    定义:给定一种语言,定义他的文法的一种表示,并定义一个解释器,该解释器使用该表示来解释语言中句子. 类型:行为类模式 类图: 解释器模式是一个比较少用的模式,本人之前也没有用过这个模式.下面我们就来一起看一下解释器模式.   解释器模式的结构 抽象解释器:声明一个所有具体表达式都要实现的抽象接口(或者抽象类),接口中主要是一个interpret()方法,称为解释操作.具体解释任务由它的各个实现类来完成,具体的解释器分别由终结符解释器TerminalExpression和非终结符解释器Nonter

  • 深入解析Java的设计模式编程中建造者模式的运用

    定义:将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示. 类型:创建类模式 类图: 四个要素 产品类:一般是一个较为复杂的对象,也就是说创建对象的过程比较复杂,一般会有比较多的代码量.在本类图中,产品类是一个具体的类,而非抽象类.实际编程中,产品类可以是由一个抽象类与它的不同实现组成,也可以是由多个抽象类与他们的实现组成. 抽象建造者:引入抽象建造者的目的,是为了将建造的具体过程交与它的子类来实现.这样更容易扩展.一般至少会有两个抽象方法,一个用来建造产品,一个是用来返回

  • 深入解析C++设计模式编程中解释器模式的运用

    解释器模式(interpreter),给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子. 解释器模式需要解决的是,如果一种特定类型的问题发生的频率足够高,那么可能就值得将该问题的各个实例表述为一个简单语言中的句子.这样就可以构建一个解释器,该解释器通过解释这些句子来解决该问题.当有一个语言需要解释执行,并且你可将该语言中的句子表示为一个抽象语法树时,可使用解释器模式.用了解释器模式,就意味着可以很容易地改变和扩展文法,因为该模式使用类来表示文法规则,

  • Python设计模式编程中解释器模式的简单程序示例分享

    模式特点:给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子. 我们来看一下下面这样的程序结构: class Context: def __init__(self): self.input="" self.output="" class AbstractExpression: def Interpret(self,context): pass class Expression(AbstractExpression): de

  • 深入解析Java的设计模式编程中的模板方法模式

    定义:  定义一个操作中的算法的框架,而将一些步骤延迟到子类中.使得子类可以不改变一个算法的结构即可重新定义该算法的某些特定步骤. 听起来好高端的样子,我的理解: 1.父类声明了若干个抽象方法(基本方法)和若干个具体方法(模板方法) 2.抽象方法是一个算法(过程)的步骤,在子类中实现 3.模板方法是一个算法(过程)的框架,在父类中已经约定好,实现对基本方法调用,完成固定的逻辑 4.一个算法(过程)的结构在父类中定义,具体的实现细节则在子类中实现 注:为了防止恶意操作,一般模板方法都加上final

  • 深入解析Java的设计模式编程中单例模式的使用

    定义:确保一个类只有一个实例,而且自行实例化并向整个系统提供这个实例. 类型:创建类模式 类图: 类图知识点: 1.类图分为三部分,依次是类名.属性.方法 2.以<<开头和以>>结尾的为注释信息 3.修饰符+代表public,-代表private,#代表protected,什么都没有代表包可见. 4.带下划线的属性或方法代表是静态的. 5.对类图中对象的关系不熟悉的朋友可以参考文章:设计模式中类的关系. 单例模式应该是23种设计模式中最简单的一种模式了.它有以下几个要素: 私有的构

  • 举例解析Java的设计模式编程中里氏替换原则的意义

    里氏替换原则,OCP作为OO的高层原则,主张使用"抽象(Abstraction)"和"多态(Polymorphism)"将设计中的静态结构改为动态结构,维持设计的封闭性."抽象"是语言提供的功能."多态"由继承语义实现. 里氏替换原则包含以下4层含义: 子类可以实现父类的抽象方法,但是不能覆盖父类的非抽象方法. 子类中可以增加自己特有的方法. 当子类覆盖或实现父类的方法时,方法的前置条件(即方法的形参)要比父类方法的输入参数更

  • Python 设计模式行为型解释器模式

    目录 一.解释器模式 二.应用场景 三.代码示例 一.解释器模式 解释器模式,开发者自定义一种 “有内涵” 的语言(或者叫字符串),并设定相关的解释规则,输入该字符串后可以输出公认的解释,或者执行程序可以理解的动作. 优点: 可扩展性比较好,灵活. 增加了新的解释表达式的方式. 易于实现简单文法. 缺点: 可利用场景比较少. 对于复杂的文法比较难维护. 解释器模式会引起类膨胀. 二.应用场景 SQL 解析 符号处理引擎 三.代码示例 实体角色: 终结符表达式:实现与文法中的元素相关联的解释操作,

  • 解析Java实现设计模式六大原则之里氏替换原则

    一.什么是里氏替换原则 1.1.里氏替换原则定义 里氏替换原则(Liskov Substitution principle)是对子类型的特别定义的. 为什么叫里氏替换原则呢?因为这项原则最早是在1988年,由麻省理工学院的一位姓里的女士(Barbara Liskov)提出来的. 里氏替换原则有两层定义: 定义1 If S is a subtype of T, then objects of type T may be replaced with objects of type S, withou

随机推荐