MySQL数据库锁机制原理解析

在并发访问情况下,很有可能出现不可重复读等等读现象。为了更好的应对高并发,封锁、时间戳、乐观并发控制(乐观锁)、悲观并发控制(悲观锁)都是并发控制采用的主要技术方式。

锁分类

①、按操作划分:DML锁,DDL锁

②、按锁的粒度划分:表级锁、行级锁、页级锁

③、按锁级别划分:共享锁、排他锁

④、按加锁方式划分:自动锁、显示锁

⑤、按使用方式划分:乐观锁、悲观锁

乐观锁和悲观锁

乐观并发控制和悲观并发控制是并发控制采用的主要方法。乐观锁和悲观锁不仅在关系数据库里应用,在Hibernate、Memcache等等也有相关概念。

悲观锁:也即悲观并发控制,Pessimistic Concurrency Controller,缩写PCC。悲观锁是指在数据处理过程,使数据处于锁定状态,一般使用数据库的锁机制实现。

备注,在MySQL中使用悲观锁,必须关闭MySQL的自动提交,set autocommit=0。MySQL默认使用自动提交autocommit模式,也即你执行一个更新操作,MySQL会自动将结果提交。

例如:使用select...for update方式将数据锁住,也就是开启了排他锁

//0.开始事务
begin;/begin work;/start transaction; (三者选一就可
//1.查询出商品信息
select status from t_goods where id=1 for update;
//2.根据商品信息生成订单
insert into t_orders (id,goods_id) values (null,1);
//3.修改商品status为2
update t_goods set status=2;
//4.提交事务
commit;/commit work;

悲观锁

优点:悲观锁利用数据库中的锁机制来实现数据变化的顺序执行,这是最有效的办法

缺点:加锁机制会产生额外的开销,增加产生死锁的机会。一个事务用悲观锁对数据加锁之后,其他事务将不能对加锁的数据进行除了查询以外的所有操作,如果该事务执行时间很长,那么其他事务将一直等待,那势必影响我们系统的吞吐量。

乐观锁

优点:乐观锁不在数据库上加锁,任何事务都可以对数据进行操作,在更新时才进行校验,这样就避免了悲观锁造成的吞吐量下降的劣势。

缺点:乐观锁因为是通过我们人为实现的,它仅仅适用于我们自己业务中,如果有外来事务插入,那么就可能发生错误。

  • MySQL常用存储引擎的锁机制
  • BDB:支持页级锁和表级锁,默认是页级锁
  • InnoDB:支持行级锁和表级锁,默认是行级锁
  • MyISAM &Memory:这两个存储引擎都是采用表级锁

MySQL中排它锁和共享锁

排它锁(exclusive locck)

排它锁又叫写锁,如果事务T对A加上排它锁,则其它事务都不能对A加任何类型的锁。获准排它锁的事务既能读数据,又能写数据。

用法:SELECT ... FOR UPDATE

共享锁(share lock)

共享锁又叫读锁,如果事务T对A加上共享锁,则其它事务只能对A再加共享锁,不能加其它锁。获准共享锁的事务只能读数据,不能写数据。

用法:SELECT ... LOCK IN SHARE MODE;

MySQL中的行级锁、表级锁和页级锁

行级锁:行级锁分为共享锁和排它锁。行级锁是Mysql中锁定粒度最细的锁。InnoDB引擎支持行级锁和表级锁,只有在通过索引条件检索数据的时候,才使用行级锁,否就使用表级锁。行级锁开销大,加锁慢,锁定粒度最小,发生锁冲突概率最低,并发度最高

表级锁:表级锁分为表共享锁和表独占锁。表级锁开销小,加锁快,锁定粒度大、发生锁冲突最高,并发度最低

页级锁:页级锁是MySQL中锁定粒度介于行级锁和表级锁中间的一种锁。表级锁速度快,但冲突多,行级冲突少,但速度慢。所以取了折衷的页级,一次锁定相邻的一组记录。BDB支持页级锁。

开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • MySQL数据库之Purge死锁问题解析

    Purge死锁 场景说明 Purge死锁说明 表中存在记录(unique key) 10,20,30,40 (且有 自增主键 ),现在删除记录 20 ,并且已经 提交 了该事物. purge 线程此时还 没有回收 该记录,且此时又 插入 新的记录 20 . +------+------+------+------+ orignal | 10 | 20 | 30 | 40 | unique +------+------+------+------+ delete 20 +------+------

  • mysql数据库锁的产生原因及解决办法

    数据库和操作系统一样,是一个多用户使用的共享资源.当多个用户并发地存取数据 时,在数据库中就会产生多个事务同时存取同一数据的情况.若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性.加锁是实现数据库并 发控制的一个非常重要的技术.在实际应用中经常会遇到的与锁相关的异常情况,当两个事务需要一组有冲突的锁,而不能将事务继续下去的话,就会出现死锁,严 重影响应用的正常执行. 在数据库中有两种基本的锁类型:排它锁(Exclusive Locks,即X锁)和共享锁(Share Lock

  • Mysql 数据库死锁过程分析(select for update)

    近期有一个业务需求,多台机器需要同时从Mysql一个表里查询数据并做后续业务逻辑,为了防止多台机器同时拿到一样的数据,每台机器需要在获取时锁住获取数据的数据段,保证多台机器不拿到相同的数据. 我们Mysql的存储引擎是innodb,支持行锁.解决同时拿数据的方法有很多,为了更加简单,不增加其他表和服务的情况下,我们考虑采用select... for update的方式,这样X锁锁住查询的数据段,表里其他数据没有锁,其他业务逻辑还是可以操作. 这样一台服务器比如select .. for upda

  • mysql 数据库死锁原因及解决办法

    死锁(Deadlock) 所谓死锁:是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去.此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程.由于资源占用是互斥的,当某个进程提出申请资源后,使得有关进程在无外力协助下,永远分配不到必需的资源而无法继续运行,这就产生了一种特殊现象死锁. 一种情形,此时执行程序中两个或多个线程发生永久堵塞(等待),每个线程都在等待被其他线程占用并堵塞了的资源.例如,如果线程A锁住了记

  • Mysql数据库锁定机制详细介绍

    前言 为了保证数据的一致完整性,任何一个数据库都存在锁定机制.锁定机制的优劣直接应想到一个数据库系统的并发处理能力和性能,所以锁定机制的实现也就成为了各种数据库的核心技术之一.本章将对MySQL中两种使用最为频繁的存储引擎MyISAM和Innodb各自的锁定机制进行较为详细的分析. MySQL锁定机制简介 数据库锁定机制简单来说就是数据库为了保证数据的一致性而使各种共享资源在被并发访问访问变得有序所设计的一种规则.对于任何一种数据库来说都需要有相应的锁定机制,所以MySQL自然也不能例外.MyS

  • MySQL数据库的一次死锁实例分析

    1.故事起因于2016年11月15日的一个生产bug.业务场景是:归档一个表里边的数据到历史表里边,同是删除主表记录. 2.背景场景简化如下(数据库引擎InnoDb,数据隔离级别RR[REPEATABLE]) -- 创建表test1 CREATE TABLE test1 ( id int(11) NOT NULL AUTO_INCREMENT, name varchar(10) NOT NULL, PRIMARY KEY (id) ); insert into test1 values('hel

  • MySQL数据库锁机制原理解析

    在并发访问情况下,很有可能出现不可重复读等等读现象.为了更好的应对高并发,封锁.时间戳.乐观并发控制(乐观锁).悲观并发控制(悲观锁)都是并发控制采用的主要技术方式. 锁分类 ①.按操作划分:DML锁,DDL锁 ②.按锁的粒度划分:表级锁.行级锁.页级锁 ③.按锁级别划分:共享锁.排他锁 ④.按加锁方式划分:自动锁.显示锁 ⑤.按使用方式划分:乐观锁.悲观锁 乐观锁和悲观锁 乐观并发控制和悲观并发控制是并发控制采用的主要方法.乐观锁和悲观锁不仅在关系数据库里应用,在Hibernate.Memca

  • MySQL数据库本地事务原理解析

    在经典的数据库理论里,本地事务具备四大特征: 原子性 事务中的所有操作都是以原子的方式执行的,要么全部成功,要么全部失败: 一致性 事务执行前后,所有的数据都应该处于一致性状态---即要满足数据库表的一致性约束,也要达到业务一致性(完成了业务目标): 隔离性 并发执行的事务不应该相互干扰:隔离性的强度由隔离级别决定: 持久性 事务一旦被提交,它添加/修改的数据不会随着系统崩溃而丢失: 在MySQL(InnoDB引擎)中,原子性和持久性是通过Redo Log来实现的,一致性是通过Undo Log实

  • Java和Dubbo的SPI机制原理解析

    SPI: 简单理解就是,你一个接口有多种实现,然后在代码运行时候,具体选用那个实现,这时候我们就可以通过一些特定的方式来告诉程序寻用那个实现类,这就是SPI. JAVA的SPI 全称为 Service Provider Interface,是一种服务发现机制.它是约定在 Classpath 下的 META-INF/services/ 目录里创建一个以服务接口命名的文件,然后文件里面记录的是此 jar 包提供的具体实现类的全限定名. 这样当我们引用了某个 jar 包的时候就可以去找这个 jar 包

  • MySQL示例DTID主从原理解析

    目录 1.GTID基本概念 2.GTID优点 3.GTID的工作原理 4.GTID比传统复制的优势 5.启动的方法 6.GTID(一主一从)配置 6.1环境: 6.2在主库上给从库授权: 6.3确保数据一致操作 6.4配置主库 6.5配置从库 6.6配置主从复制 7.GTID(一主俩从) 8.GTID(俩主一从) 1.最新环境 2.所有服务器均关闭防火墙或者放行防火墙 3.授权连接 master01库授权普通用户 slave进行连接 master02授权普通用户 slave进行连接 4.分别进行

  • MySQL索引长度限制原理解析

    这篇文章主要介绍了MySQL索引长度限制原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 索引 TextField是不支持建立索引的 MySQL对索引字段长度有限制 innodb引擎的每个索引列长度限制为767字节(bytes),所有组成索引列的长度和不能大于3072字节 myisam引擎的每个索引列长度限制为1000字节,所有组成索引列的长度和不能大于1000字节 varchar的最大长度是指字符长度,若数据库字符集为utf-8,则一个

  • mysql中锁机制的最全面讲解

    目录 前言 全局锁 全库逻辑备份 FTWRL和set global readonly=true的区别 表级锁 MDL锁 行锁 死锁 记录锁 间隙锁 临键锁 乐观锁和悲观锁 总结 前言 根据加锁的粒度区分 全局锁 表级锁 行锁 记录锁 间隙锁 临键锁 根据加锁的场景 乐观锁 悲观锁 全局锁 锁对象是:整个数据库实例 Flush tables with read lock (FTWRL)-会让整个库处于只读状态 使用场景: 做全库逻辑备份 全库逻辑备份 为什么要进行全局锁才能进行数据备份呢? 就比如

  • MySQL数据库SELECT查询表达式解析

    数据的管理在很大一部分是在进行查找工作,而SELECT占据了很大的一部分 SELECT select_expr [,select_expr...] [ FROM table_reference WHERE [where_condition] [GROUP BY {col_name | position} [ASC| DESC],...] [HAVING where_condition] [ORDER BY {col_name | expr |position} [ASC| DESC],...]

  • Java方法参数传递机制原理解析

    这篇文章主要介绍了Java方法参数传递机制原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 Java方法中如果声明了形参,在调用方法时就必须给这些形参指定参数值,实际传进去的这个值就叫做实参. 这就涉及到Java中的参数传递机制,值传递. 基本数据类型 基本数据类型,值传递的体现是数值的传递. public class TransferTempTest { public static void main(String[] args) {

  • java的package和import机制原理解析

    这篇文章主要介绍了java的package和import机制原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在说package.import机制前我们先来了解下java的CLASSPATH. CLASSPATH顾名思义就是class的路径,当我们在系统中运行某个java程序时,它就会告诉系统在这些地方寻找这个class文件 CLASSPATH=.;%JAVA_HOME%\lib;%JAVA_HOME%\lib\tools.jar; 这是

  • SpringCloud Eureka自我保护机制原理解析

    这篇文章主要介绍了SpringCloud Eureka自我保护机制原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1. 自我保护机制演示 eureka在频繁修改微服务名称的时候,可以会出现如下现象: 2. 什么是自我保护模式? 默认情况下,如果EurekaServer在一定时间内没有接收到某个微服务实例的心跳,EurekaServer将会注销该实例(默认90秒).但是当网络分区故障发生时,微服务与EurekaServer之间无法正常通信

随机推荐