如何使用Java模拟退火算法优化Hash函数

目录
  • 一、背景
  • 二、放弃 hash 函数
  • 三、优化 hash 函数
    • 3.1、评价函数
    • 3.2、训练策略
    • 3.3、ForkJoin 框架
    • 3.4、效果

一、背景

现有个处理股票行情消息的系统,其架构如下:

由于数据量巨大,系统中启动了 15 个线程来消费行情消息。消息分配的策略较为简单:对 symbol 的 hashCode 取模,将消息分配给其中一个线程进行处理。 经过验证,每个线程分配到的 symbol 数量较为均匀,于是系统愉快地上线了。

运行一段时间后,突然收到了系统的告警,但此时并非消息峰值时间段。经过排查后,发现问题出现在 hash 函数上:

虽然每个线程被分配到的 symbol 数量较为均衡,但是部分热门 symbol 的报价消息量会更多,如果热门 symbol 集中到特定线程上,就会造成线程负载不均衡,使得系统整体的吞吐量大打折扣。

为提高系统的吞吐量,有必要消息分发逻辑进行一些改造,避免出现热点线程。为此,系统需要记录下某天内每个 symbol 的消息量,然后在第二天使用这些数据,对分发逻辑进行调整。具体的改造的方案可以分为两种:

  • 放弃使用 hash 函数
  • 对 hash 函数进行优化

二、放弃 hash 函数

问题可以抽象为:

将 5000 个非负整数分配至 15 个桶(bucket)中,并尽可能保证每个桶中的元素之和接近(每个桶中的元素个数无限制)。

每个整数元素可能的放置方法有 15 种,这个问题总共可能的解有 155000种,暴力求解的可能性微乎其微。作为工程问题,最优解不是必要的,可以退而求其次寻找一个可接受的次优解:

根据所有 symbol 的消息总数计算一个期望的分布均值(expectation)。将每个 symbol 的消息数按照 symbol 的顺序进行排列,最后将这组数组划分为 15 个区间,并且尽可能使得每个区间元素之和与 expection 接近。使用一个有序查找表记录每个区间的首个 symbol,后续就可以按照这个表对数据进行划分。

public class FindBestDistribution {

    static final int NUM_OF_SYMBOLS = 5000;
    static final int NUM_OF_BUCKETS = 15;

    public static void main(String[] args) {
        // 生成样本
        IntStream ints = ThreadLocalRandom.current().ints(0, 1000);
        PrimitiveIterator.OfInt iterator = ints.iterator();

        Map<String,Integer> symbolAndCount = new TreeMap<>();
        for (int i=0; i<NUM_OF_SYMBOLS; i++) {
            symbolAndCount.put(Integer.toHexString(i).toUpperCase(), iterator.next());
        }

        // 按照 symbol 划分每个桶的数量
        TreeMap<String, Integer> distribution = findBestDistribution(symbolAndCount);

        // 测试效果
        int[] buckets = new int[NUM_OF_BUCKETS];
        for (Map.Entry<String, Integer> entry : symbolAndCount.entrySet()) {
            Map.Entry<String, Integer> floor = distribution.floorEntry(entry.getKey());
            int bucketIndex = floor == null ? 0 : floor.getValue();
            buckets[bucketIndex] += entry.getValue();
        }

        System.out.printf("buckets: %s\n", Arrays.toString(buckets));
    }

    public static TreeMap<String, Integer> findBestDistribution(Map<String,Integer> symbolAndCount) {

        // 每个桶均匀分布的情况(最优情况)
        int avg = symbolAndCount.values().stream().mapToInt(Integer::intValue).sum() / NUM_OF_BUCKETS;

        // 尝试将 symbol 放入不同的桶
        int bucketIdx = 0;
        int[] buckets = new int[NUM_OF_BUCKETS];
        String[] bulkheads = new String[NUM_OF_BUCKETS-1];
        for (Map.Entry<String, Integer> entry : symbolAndCount.entrySet()) {

            // 如果首个 symbol 数据量过大,则分配给其一个独立的桶
            int count = entry.getValue();
            if (count / 2 > avg && bucketIdx == 0 && buckets[0] == 0) {
                buckets[bucketIdx] += count;
                continue;
            }

            // 评估将 symbol 放入桶后的效果
            // 1. 如果桶中的数量更接近期望,则将其放入当前桶中
            // 2. 如果桶中的数量更远离期望,则将其放入下个桶中
            double before = Math.abs(buckets[bucketIdx] - avg);
            double after = Math.abs(buckets[bucketIdx] + count - avg);
            if (after > before && bucketIdx < buckets.length - 1) {
                bulkheads[bucketIdx++] = entry.getKey();
            }

            buckets[bucketIdx] += count;
        }

        System.out.printf("expectation: %d\n", avg);
        System.out.printf("bulkheads: %s\n", Arrays.toString(bulkheads));

        TreeMap<String,Integer> distribution = new TreeMap<>();
        for (int i=0; i<bulkheads.length; i++) {
            distribution.put(bulkheads[i], i+1);
        }
        return distribution;
    }
}

该方法存在的问题:

  • 分配策略并不是最优解,且无法对其分片效果进行直观的评估。
  • 当区间数量较多时,查找表本身可能成为一个潜在的性能瓶颈。
  • 可能的组合受到 key 的顺序限制,极大地限制了可能的解空间。

三、优化 hash 函数

换个角度来看,造成分布不均匀的原因不是数据,而是 hash 函数本身。

项目中使用的 hash 函数是 JDK String 中的原生实现。经过查阅资料,发现该实现其实是 BKDRHash 的 seed = 31 的特殊情况。这样意味着:通过调整 seed 的值,可以改变 hash 函数的特性并使其适配特定的数据分布。

int BKDRHash(char[] value, int seed) {
    int hash = 0;
    for (int i = 0; i < value.length; i++) {
        hash = hash * seed + value[i];
    }
    return hash & 0x7fffffff;
}

那么问题来了,应该如何评估某个 seed 的分布的优劣?

3.1、评价函数

一种可行的方法是计算每个 seed 对应的 bucket 分布的标准差,标准差越小则分布越均匀,则该 seed 越优。

然而这一做法只考虑了每个 bucket 与均值之间的误差,无法量化不同 bucket 之间的误差。为了能够直观的量化 bucket 之间分布差异的情况,考虑使用下面的评估函数:

ouble calculateDivergence(long[] bucket, long expectation) {
    long divergence = 0;
    for (int i=0; i<bucket.length; i++) {
        final long a = bucket[i];
        final long b = (a - expectation) * (a - expectation);
        for (int j=i+1; j<bucket.length; j++) {
            long c = (a - bucket[j]) * (a - bucket[j]);
            divergence += Math.max(b, c);
        }
    }
    return divergence; // the less the better
}

该数值越小,则证明 seed 对应的分布越均匀,其对应的 hash 函数越优。

3.2、训练策略

seed 是一个 32bit 的无符号整数,其取值范围为 0 ~ 232-1。在 5000 个 symbol 的情况下,单线程尝试遍历所有 seed 的时间约为 25 小时。

通常情况下 symbol 的数量会超过 5000,因此实际的搜索时间会大于这个值。此外,受限于计算资源限制,无法进行大规模的并行搜索,因此穷举法的耗时是不可接受的。

幸好本例并不要求最优解,可以引入启发式搜索算法,加快训练速度。由于本人在这方面并不熟悉,为了降低编程难度,最终选择了模拟退火(simulated annealing)算法。它模拟固体退火过程的热平衡问题与随机搜索寻优问题的相似性来达到寻找全局最优或近似全局最优的目的。
相较于最简单的爬山法,模拟退火算法通以一定的概率接受较差的解,从而扩大搜索范围,保证解近似最优。

/**
 * Basic framework of simulated annealing algorithm
 * @param <X> the solution of given problem
 */
public abstract class SimulatedAnnealing<X> {

    protected final int numberOfIterations;    // stopping condition for simulations

    protected final double coolingRate;        // the percentage by which we reduce the temperature of the system
    protected final double initialTemperature; // the starting energy of the system
    protected final double minimumTemperature; // optional stopping condition

    protected final long simulationTime;       // optional stopping condition
    protected final int detectionInterval;     // optional stopping condition

    protected SimulatedAnnealing(int numberOfIterations, double coolingRate) {
        this(numberOfIterations, coolingRate, 10000000, 1, 0, 0);
    }

    protected SimulatedAnnealing(int numberOfIterations, double coolingRate, double initialTemperature, double minimumTemperature, long simulationTime, int detectionInterval) {
        this.numberOfIterations = numberOfIterations;
        this.coolingRate = coolingRate;
        this.initialTemperature = initialTemperature;
        this.minimumTemperature = minimumTemperature;
        this.simulationTime = simulationTime;
        this.detectionInterval = detectionInterval;
    }

    protected abstract double score(X currentSolution);

    protected abstract X neighbourSolution(X currentSolution);

    public X simulateAnnealing(X currentSolution) {

        final long startTime = System.currentTimeMillis();

        // Initialize searching
        X bestSolution = currentSolution;
        double bestScore = score(bestSolution);
        double currentScore = bestScore;

        double t = initialTemperature;
        for (int i = 0; i < numberOfIterations; i++) {
            if (currentScore < bestScore) {
                // If the new solution is better, accept it unconditionally
                bestScore = currentScore;
                bestSolution = currentSolution;
            } else {
                // If the new solution is worse, calculate an acceptance probability for the worse solution
                // At high temperatures, the system is more likely to accept the solutions that are worse
                boolean rejectWorse = Math.exp((bestScore - currentScore) / t) < Math.random();
                if (rejectWorse || currentScore == bestScore) {
                    currentSolution = neighbourSolution(currentSolution);
                    currentScore = score(currentSolution);
                }
            }

            // Stop searching when the temperature is too low
            if ((t *= coolingRate) < minimumTemperature) {
                break;
            }

            // Stop searching when simulation time runs out
            if (simulationTime > 0 && (i+1) % detectionInterval == 0) {
                if (System.currentTimeMillis() - startTime > simulationTime)
                    break;
            }
        }

        return bestSolution;
    }
}

/**
 * Search best hash seed for given key distribution and number of buckets with simulated annealing algorithm
 */
@Data
public class SimulatedAnnealingHashing extends SimulatedAnnealing<HashingSolution> {

    private static final int DISTRIBUTION_BATCH = 100;
    static final int SEARCH_BATCH = 200;

    private final int[] hashCodes = new int[SEARCH_BATCH];
    private final long[][] buckets = new long[SEARCH_BATCH][];

    @Data
    public class HashingSolution {

        private final int begin, range; // the begin and range for searching
        private int bestSeed;     // the best seed found in this search
        private long bestScore;   // the score corresponding to bestSeed

        private long calculateDivergence(long[] bucket) {
            long divergence = 0;
            for (int i=0; i<bucket.length; i++) {
                final long a = bucket[i];
                final long b = (a - expectation) * (a - expectation);
                for (int j=i+1; j<bucket.length; j++) {
                    long c = (a - bucket[j]) * (a - bucket[j]);
                    divergence += Math.max(b, c);
                }
            }
            return divergence; // the less the better
        }

        private HashingSolution solve() {

            if (range != hashCodes.length) {
                throw new IllegalStateException();
            }

            for (int i=0; i<range; i++) {
                Arrays.fill(buckets[i], hashCodes[i] = 0);
            }

            for (KeyDistribution[] bucket : distributions) {
                for (KeyDistribution distribution : bucket) {
                    Hashing.BKDRHash(distribution.getKey(), begin, hashCodes);
                    for (int k = 0; k< hashCodes.length; k++) {
                        int n = hashCodes[k] % buckets[k].length;
                        buckets[k][n] += distribution.getCount();
                    }
                }
            }

            int best = -1;
            long bestScore = Integer.MAX_VALUE;
            for (int i = 0; i< buckets.length; i++) {
                long score = calculateDivergence(buckets[i]);
                if (i == 0 || score < bestScore) {
                    bestScore = score;
                    best = i;
                }
            }

            if (best < 0) {
                throw new IllegalStateException();
            }

            this.bestScore = bestScore;
            this.bestSeed = begin + best;
            return this;
        }

        @Override
        public String toString() {
            return String.format("(seed:%d, score:%d)", bestSeed, bestScore);
        }
    }

    private final KeyDistribution[][] distributions; // key and its count(2-dimensional array for better performance)
    private final long expectation;  // the expectation count of each bucket
    private final int searchOutset;
    private int searchMin, searchMax;

    /**
     * SimulatedAnnealingHashing Prototype
     * @param keyAndCounts keys for hashing and count for each key
     * @param numOfBuckets number of buckets
     */
    public SimulatedAnnealingHashing(Map<String, Integer> keyAndCounts, int numOfBuckets) {
        super(100000000, .9999);
        distributions = buildDistribution(keyAndCounts);
        long sum = 0;
        for (KeyDistribution[] batch : distributions) {
            for (KeyDistribution distribution : batch) {
                sum += distribution.getCount();
            }
        }
        this.expectation = sum / numOfBuckets;
        this.searchOutset = 0;
        for (int i = 0; i< buckets.length; i++) {
            buckets[i] = new long[numOfBuckets];
        }
    }

    /**
     * SimulatedAnnealingHashing Derivative
     * @param prototype prototype simulation
     * @param searchOutset the outset for searching
     * @param simulationTime the expect time consuming for simulation
     */
    private SimulatedAnnealingHashing(SimulatedAnnealingHashing prototype, int searchOutset, long simulationTime) {
        super(prototype.numberOfIterations, prototype.coolingRate, prototype.initialTemperature, prototype.minimumTemperature,
                simulationTime, 10000);
        distributions = prototype.distributions;
        expectation = prototype.expectation;
        for (int i = 0; i< buckets.length; i++) {
            buckets[i] = new long[prototype.buckets[i].length];
        }
        this.searchOutset = searchOutset;
        this.searchMax = searchMin = searchOutset;
    }

    @Override
    public String toString() {
        return String.format("expectation: %d, outset:%d, search(min:%d, max:%d)", expectation, searchOutset, searchMin, searchMax);
    }

    private KeyDistribution[][] buildDistribution(Map<String, Integer> symbolCounts) {
        int bucketNum = symbolCounts.size() / DISTRIBUTION_BATCH + Integer.signum(symbolCounts.size() % DISTRIBUTION_BATCH);
        KeyDistribution[][] distributions = new KeyDistribution[bucketNum][];

        int bucketIndex = 0;
        List<KeyDistribution> batch = new ArrayList<>(DISTRIBUTION_BATCH);
        for (Map.Entry<String, Integer> entry : symbolCounts.entrySet()) {
            batch.add(new KeyDistribution(entry.getKey().toCharArray(), entry.getValue()));
            if (batch.size() == DISTRIBUTION_BATCH) {
                distributions[bucketIndex++] = batch.toArray(new KeyDistribution[0]);
                batch.clear();
            }
        }
        if (batch.size() > 0) {
            distributions[bucketIndex] = batch.toArray(new KeyDistribution[0]);
            batch.clear();
        }
        return distributions;
    }

    @Override
    protected double score(HashingSolution currentSolution) {
        return currentSolution.solve().bestScore;
    }

    @Override
    protected HashingSolution neighbourSolution(HashingSolution currentSolution) {
        // The default range of neighbourhood is [-100, 100]
        int rand = ThreadLocalRandom.current().nextInt(-100, 101);
        int next = currentSolution.begin + rand;
        searchMin = Math.min(next, searchMin);
        searchMax = Math.max(next, searchMax);
        return new HashingSolution(next, currentSolution.range);
    }

    public HashingSolution solve() {
        searchMin = searchMax = searchOutset;
        HashingSolution initialSolution = new HashingSolution(searchOutset, SEARCH_BATCH);
        return simulateAnnealing(initialSolution);
    }

    public SimulatedAnnealingHashing derive(int searchOutset, long simulationTime) {
        return new SimulatedAnnealingHashing(this, searchOutset, simulationTime);
    }
}

3.3、ForkJoin 框架

为了达到更好的搜索效果,可以将整个搜索区域递归地划分为两两相邻的区域,然后在这些区域上执行并发的搜索,并递归地合并相邻区域的搜索结果。

使用 JDK 提供的 ForkJoinPool 与 RecursiveTask 能很好地完成以上任务。

@Data
@Slf4j
public class HashingSeedCalculator {

    /**
     * Recursive search task
     */
    private class HashingSeedCalculatorSearchTask extends RecursiveTask<HashingSolution> {

        private SimulatedAnnealingHashing simulation;
        private final int level;
        private final int center, range;

        private HashingSeedCalculatorSearchTask() {
            this.center = 0;
            this.range = Integer.MAX_VALUE / SimulatedAnnealingHashing.SEARCH_BATCH;
            this.level = traversalDepth;
            this.simulation = hashingSimulation;
        }

        private HashingSeedCalculatorSearchTask(HashingSeedCalculatorSearchTask parent, int center, int range) {
            this.center = center;
            this.range = range;
            this.level = parent.level - 1;
            this.simulation = parent.simulation;
        }

        @Override
        protected HashingSolution compute() {
            if (level == 0) {
                long actualCenter = center * SimulatedAnnealingHashing.SEARCH_BATCH;
                log.info("Searching around center {}", actualCenter);
                HashingSolution solution = simulation.derive(center, perShardRunningMills).solve();
                log.info("Searching around center {} found {}", actualCenter, solution);
                return solution;
            } else {
                int halfRange = range / 2;
                int leftCenter = center - halfRange, rightCenter = center + halfRange;
                ForkJoinTask<HashingSolution> leftTask = new HashingSeedCalculatorSearchTask(this, leftCenter, halfRange).fork();
                ForkJoinTask<HashingSolution> rightTask = new HashingSeedCalculatorSearchTask(this, rightCenter, halfRange).fork();
                HashingSolution left = leftTask.join();
                HashingSolution right = rightTask.join();
                return left.getBestScore() < right.getBestScore() ? left : right;
            }
        }
    }

    private final int poolParallelism;
    private final int traversalDepth;
    private final long perShardRunningMills;
    private final SimulatedAnnealingHashing hashingSimulation;

    /**
     * HashingSeedCalculator
     * @param numberOfShards the shard of the whole search range [Integer.MIN_VALUE, Integer.MAX_VALUE]
     * @param totalRunningHours the expect total time consuming for searching
     * @param symbolCounts the key and it`s distribution
     * @param numOfBuckets the number of buckets
     */
    public HashingSeedCalculator(int numberOfShards, int totalRunningHours, Map<String, Integer> symbolCounts, int numOfBuckets) {
        int n = (int) (Math.log(numberOfShards) / Math.log(2));
        if (Math.pow(2, n) != numberOfShards) {
            throw new IllegalArgumentException();
        }
        this.traversalDepth = n;
        this.poolParallelism = Math.max(ForkJoinPool.getCommonPoolParallelism() / 3 * 2, 1); // conservative estimation for parallelism
        this.perShardRunningMills = TimeUnit.HOURS.toMillis(totalRunningHours * poolParallelism) / numberOfShards;
        this.hashingSimulation = new SimulatedAnnealingHashing(symbolCounts, numOfBuckets);
    }

    @Override
    public String toString() {
        int numberOfShards = (int) Math.pow(2, traversalDepth);
        int totalRunningHours = (int) TimeUnit.MILLISECONDS.toHours(perShardRunningMills * numberOfShards) / poolParallelism;
        return "HashingSeedCalculator(" +
                "numberOfShards: " + numberOfShards +
                ", perShardRunningMinutes: " + TimeUnit.MILLISECONDS.toMinutes(perShardRunningMills) +
                ", totalRunningHours: " + totalRunningHours +
                ", poolParallelism: " + poolParallelism +
                ", traversalDepth: " + traversalDepth + ")";
    }

    public synchronized HashingSolution searchBestSeed() {
        long now = System.currentTimeMillis();
        log.info("SearchBestSeed start");
        ForkJoinTask<HashingSolution> root = new HashingSeedCalculatorSearchTask().fork();
        HashingSolution initSolution = hashingSimulation.derive(0, perShardRunningMills).solve();
        HashingSolution bestSolution = root.join();
        log.info("Found init solution {}", initSolution);
        log.info("Found best solution {}", bestSolution);
        if (initSolution.getBestScore() < bestSolution.getBestScore()) {
            bestSolution = initSolution;
        }
        long cost = System.currentTimeMillis() - now;
        log.info("SearchBestSeed finish (cost:{}ms)", cost);
        return bestSolution;
    }

}

3.4、效果

将改造后的代码部署到测试环境后,某日训练日志:

12:49:15.227 85172866 INFO hash.HashingSeedCalculator - Found init solution (seed:15231, score:930685828341164)
12:49:15.227 85172866 INFO hash.HashingSeedCalculator - Found best solution (seed:362333, score:793386389726926)
12:49:15.227 85172866 INFO hash.HashingSeedCalculator - SearchBestSeed finish (cost:10154898ms)
12:49:15.227 85172866 INFO hash.TrainingService -

Training result: (seed:362333, score:793386389726926)

Buckets: 15

Expectation: 44045697

Result of Hashing.HashCode(seed=362333): 21327108 [42512742, 40479608, 43915771, 47211553, 45354264, 43209190, 43196570, 44725786, 41999747, 46450288, 46079231, 45116615, 44004021, 43896194, 42533877]

Result of Hashing.HashCode(seed=31): 66929172 [39723630, 48721463, 43365391, 46301448, 43931616, 44678194, 39064877, 45922454, 43171141, 40715060, 33964547, 49709090, 58869949, 34964729, 47581868]

当晚使用 BKDRHash(seed=31) 对新的交易日数据的进行分片:

04:00:59.001 partition messages per minute [45171, 68641, 62001, 80016, 55977, 61916, 55102, 49322, 55982, 57081, 51100, 70437, 135992, 37823, 58552] , messages total [39654953, 48666261, 43310578, 46146841, 43834832, 44577454, 38990331, 45871075, 43106710, 40600708, 33781629, 49752592, 58584246, 34928991, 47545369]

当晚使用 BKDRHash(seed=362333) 对新的交易日数据的进行分片:

04:00:59.001 partition messages per minute [62424, 82048, 64184, 47000, 57206, 69439, 64430, 60096, 46986, 58182, 54557, 41523, 64310, 72402, 100326] , messages total [44985772, 48329212, 39995385, 43675702, 45216341, 45524616, 41335804, 44917938, 44605376, 44054821, 43371892, 42068637, 44000817, 42617562, 44652695]

对比日志发现 hash 经过优化后,分区的均匀程度有了显著的上升,并且热点分片也被消除了,基本达到当初设想的优化效果。

以上就是如何使用Java模拟退火算法优化Hash函数的详细内容,更多关于Java 模拟退火算法优化Hash的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python实现K-means聚类算法并可视化生成动图步骤详解

    K-means算法介绍 简单来说,K-means算法是一种无监督算法,不需要事先对数据集打上标签,即ground-truth,也可以对数据集进行分类,并且可以指定类别数目 牧师-村民模型 K-means 有一个著名的解释:牧师-村民模型: 有四个牧师去郊区布道,一开始牧师们随意选了几个布道点,并且把这几个布道点的情况公告给了郊区所有的村民,于是每个村民到离自己家最近的布道点去听课. 听课之后,大家觉得距离太远了,于是每个牧师统计了一下自己的课上所有的村民的地址,搬到了所有地址的中心地带,并且在海

  • 谷歌师兄的算法刷题笔记

    对于刷题相关的文章,在之前我也推荐过不少,今天在给大家推荐一份谷歌师兄的算法刷题笔记,这份笔记与以往的刷题有所区别,作者把 Leetcode 一千多道题都进行了系统的整理,并且对于每一道题的代码,都要求 beat 100%. 作者把所有题型分成了 13 个类别,截个图给大家看一下 无论是为了面试,为了打比赛还是入门学习一些算法,我还是挺建议前期按照各类题型逐个击破,这份刷题笔记,或许可以给大家带来一些帮忙. 我简单看了一下每一个道题的解答,每个题并没有给出多种答案,基本都是直接给出最优解,代码写

  • 开源一个c# 新的雪花算法

    介绍 用一种全新的雪花漂移算法(以下简称本算法),让ID更短.生成速度更快. 核心在于缩短ID长度的同时,还能保持极高并发处理量(50W/0.1s),且具有很强配置能力. 需求来源 1.作为架构设计的你,想要解决数据库主键唯一的问题,特别是在分布式系统多数据库的时候. 2.你希望这个主键是用最少的存储空间,索引速度更快,Select.Insert 和 Update 更迅速. 3.你要考虑在分库分表(合库合表)的时候,主键值可直接使用,并能反映业务时序. 4.如果这样的主键值太长,超过前端 JS

  • Python退火算法在高次方程的应用

    一,简介 退火算法不言而喻,就是钢铁在淬炼过程中失温而成稳定态时的过程,热力学上温度(内能)越高原子态越不稳定,而温度有一个向低温区辐射降温的物理过程,当物质内能不再降低时候该物质原子态逐渐成为稳定有序态,这对我们从随机复杂问题中找出最优解有一定借鉴意义,将这个过程化为算法,具体参见其他资料. 二,计算方程 我们所要计算的方程是f(x) = (x - 2) * (x + 3) * (x + 8) * (x - 9),是一个一元四次方程,我们称为高次方程,当然这个函数的开口是向上的,那么在一个无限

  • python利用K-Means算法实现对数据的聚类案例详解

    目的是为了检测出采集数据中的异常值.所以很明确,这种情况下的簇为2:正常数据和异常数据两大类 1.安装相应的库 import matplotlib.pyplot as plt # 用于可视化 from sklearn.cluster import KMeans # 用于聚类 import pandas as pd # 用于读取文件 2.实现聚类 2.1 读取数据并可视化 # 读取本地数据文件 df = pd.read_excel("../data/output3.xls", heade

  • Python实现粒子群算法的示例

    粒子群算法是一种基于鸟类觅食开发出来的优化算法,它是从随机解出发,通过迭代寻找最优解,通过适应度来评价解的品质. PSO算法的搜索性能取决于其全局探索和局部细化的平衡,这在很大程度上依赖于算法的控制参数,包括粒子群初始化.惯性因子w.最大飞翔速度和加速常数与等. PSO算法具有以下优点: 不依赖于问题信息,采用实数求解,算法通用性强. 需要调整的参数少,原理简单,容易实现,这是PSO算法的最大优点. 协同搜索,同时利用个体局部信息和群体全局信息指导搜索. 收敛速度快, 算法对计算机内存和CPU要

  • 如何使用Java模拟退火算法优化Hash函数

    目录 一.背景 二.放弃 hash 函数 三.优化 hash 函数 3.1.评价函数 3.2.训练策略 3.3.ForkJoin 框架 3.4.效果 一.背景 现有个处理股票行情消息的系统,其架构如下: 由于数据量巨大,系统中启动了 15 个线程来消费行情消息.消息分配的策略较为简单:对 symbol 的 hashCode 取模,将消息分配给其中一个线程进行处理. 经过验证,每个线程分配到的 symbol 数量较为均匀,于是系统愉快地上线了. 运行一段时间后,突然收到了系统的告警,但此时并非消息

  • 利用python实现PSO算法优化二元函数

    python实现PSO算法优化二元函数,具体代码如下所示: import numpy as np import random import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D #----------------------PSO参数设置--------------------------------- class PSO(): def __init__(self,pN,dim,max_iter): #初

  • Python数学建模学习模拟退火算法多变量函数优化示例解析

    目录 1.模拟退火算法 2.多变量函数优化问题 3.模拟退火算法 Python 程序 4.程序运行结果 1.模拟退火算法 退火是金属从熔融状态缓慢冷却.最终达到能量最低的平衡态的过程.模拟退火算法基于优化问题求解过程与金属退火过程的相似性,以优化目标为能量函数,以解空间为状态空间,以随机扰动模拟粒子的热运动来求解优化问题([1] KIRKPATRICK,1988). 模拟退火算法结构简单,由温度更新函数.状态产生函数.状态接受函数和内循环.外循环终止准则构成. 温度更新函数是指退火温度缓慢降低的

  • 深入学习SQL Server聚合函数算法优化技巧

    Sql server聚合函数在实际工作中应对各种需求使用的还是很广泛的,对于聚合函数的优化自然也就成为了一个重点,一个程序优化的好不好直接决定了这个程序的声明周期.Sql server聚合函数对一组值执行计算并返回单一的值.聚合函数对一组值执行计算,并返回单个值.除了 COUNT 以外,聚合函数都会忽略空值. 聚合函数经常与 SELECT 语句的 GROUP BY 子句一起使用. 一.写在前面 如果有对Sql server聚合函数不熟或者忘记了的可以看我之前的一片博客. 本文中所有数据演示都是用

  • Java编程中快速排序算法的实现及相关算法优化

    时间复杂度 平均情况:O(nlgn) 最坏情况:O(n*n),发生在当数据已经是排序状态时 快排算法的基本原理 1.从数据中选取一个值a[i]作为参考 2.以a[i] 为参考,将数据分成2部分:P1.P2,P1中的数据全部≤a[i],P2中的数据全部>a[i],数据变为{{P1}{a[i]}{P2}} 3.将P1.P2重复上述步骤,直到各部分中只剩1个数据 4.数据完成升序排列 基本示例: 原始数据: {3,9,8,5,2,1,6} 第1步:选取第1个数据:3 第2步:将数据分成2部分,左边≤3

  • 排序算法图解之Java冒泡排序及优化

    目录 1.冒泡排序简介 2.图解算法 3.冒泡排序代码实现 4.冒泡排序算法的优化 1.冒泡排序简介 冒泡排序(Bubble Sorting)即:通过对待排序的序列从前往后,依次比较相邻元素的值,若发现逆序则交换位置,使较大的元素逐渐移动到后部,就像水底的气泡一样逐渐从水面冒出来,这就是冒泡名称的由来 2.图解算法 以将序列{3, 9, -1, 10, -20}从小到大排序为例! 基本思想就是,在每一趟排序实现将最大的数移到序列的最后端!这主要通过比较相邻两个元素实现,当相邻的两个元素逆序的时候

  • java代码效率优化方法(推荐)

    1. 尽量指定类的final修饰符 带有final修饰符的类是不可派生的. 如果指定一个类为final,则该类所有的方法都是final.Java编译器会寻找机会内联(inline)所有的 final方法(这和具体的编译器实现有关).此举能够使性能平均提高50% . 2. 尽量重用对象. 特别是String 对象的使用中,出现字符串连接情况时应用StringBuffer 代替.由于系统不仅要花时间生成对象,以后可能还需花时间对这些对象进行垃圾回收和处理.因此,生成过多的对象将会给程序的性能带来很大

  • Java编程实现用hash方法切割文件

    Hash,一般翻译做"散列",也有直接音译为"哈希"的,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值.这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值.简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数. 如果有大型数据文件(如每行为url或者ip或者单词等的),以G为单位的,处理的时候需先切分.

  • 详解Java代码常见优化方案

    首先,良好的编码规范非常重要.在 java 程序中,访问速度.资源紧张等问题的大部分原因,都是代码不规范造成的. 单例的使用场景 单例模式对于减少资源占用.提高访问速度等方面有很多好处,但并不是所有场景都适用于单例. 简单来说,单例主要适用于以下三个方面: 多线程场景,通过线程同步来控制资源的并发访问. 多线程场景,控制数据共享,让多个不相关的进程或线程之间实现通信(通过访问同一资源来控制). 控制实例的产生,单例只实例化一次,以达到节约资源的目的: 不可随意使用静态变量 当某个对象被定义为 s

  • Java DFA算法案例详解

    1.背景 项目中需要对敏感词做一个过滤,首先有几个方案可以选择: 直接将敏感词组织成String后,利用indexOf方法来查询. 传统的敏感词入库后SQL查询. 利用Lucene建立分词索引来查询. 利用DFA算法来进行. 首先,项目收集到的敏感词有几千条,使用a方案肯定不行.其次,为了方便以后的扩展性尽量减少对数据库的依赖,所以放弃b方案.然后Lucene本身作为本地索引,敏感词增加后需要触发更新索引,并且这里本着轻量原则不想引入更多的库,所以放弃c方案.于是我们选定d方案为研究目标. 2.

随机推荐