pandas中的ExcelWriter和ExcelFile的实现方法

一、简介

  pandas中的ExcelFile()和ExcelWriter(),是pandas中对excel表格文件进行读写相关操作非常方便快捷的类,尤其是在对含有多个sheet的excel文件进行操控时非常方便,本文就将针对这两个类的使用方法展开介绍;

二、ExcelFile()

  在使用ExcelFile()时需要传入目标excel文件所在路径及文件名称,下面是示例:

import pandas as pd
demo_excel = pd.ExcelFile(r'D:\demo.xlsx')

  查看demo_excel的类型:

type(demo_excel)

  接下来可以使用ExcelFile()中的方法来获取目标表格文件的相关信息:

  1、sheet_names

  使用sheet_names来查看当前表格中包含的所有sheet名称(按顺序):

print(demo_excel.sheet_names)

  2、parse()

  使用parse()可以根据传入的sheet名称来提取对应的表格信息,下面是一个简单的示例:

table1 = demo_excel.parse(sheet_name=demo_excel.sheet_names[0])

table2 = demo_excel.parse(sheet_name=demo_excel.sheet_names[1])

table3 = demo_excel.parse(sheet_name=demo_excel.sheet_names[2])

print(table1)
print(table2)
print(table3)

三、ExcelWriter()

  使用ExcelWriter()可以向同一个excel的不同sheet中写入对应的表格数据,首先需要创建一个writer对象,传入的主要参数为已存在容器表格的路径及文件名称:

writer = pd.ExcelWriter(r'D:\demo.xlsx')
print(type(writer))

  基于已创建的writer对象,可以利用to_excel()方法将不同的数据框及其对应的sheet名称写入该writer对象中,并在全部表格写入完成之后,使用save()方法来执行writer中内容向对应实体excel文件写入数据的过程:

'''创建数据框1'''
df1 = pd.DataFrame({'V1':np.random.rand(100),
          'V2 ':np.random.rand(100),
          'V3':np.random.rand(100)})
df1.to_excel(writer,sheet_name='sheet1',index=False)

'''创建数据框2'''
df2 = pd.DataFrame({'V1':np.random.rand(100),
          'V2 ':np.random.rand(100),
          'V3':np.random.rand(100)})
df2.to_excel(writer,sheet_name='sheet2',index=False)

'''创建数据框3'''
df3 = pd.DataFrame({'V1':np.random.rand(100),
          'V2 ':np.random.rand(100),
          'V3':np.random.rand(100)})
df3.to_excel(writer,sheet_name='sheet3',index=False)

'''数据写出到excel文件中'''
writer.save()

  这时之前指定的外部excel文件中便成功存入相应的内容:

到此这篇关于pandas中的ExcelWriter和ExcelFile的实现方法的文章就介绍到这了,更多相关pandas ExcelWriter ExcelFile内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python pandas写入excel文件的方法示例

    pandas读取.写入csv数据非常方便,但是有时希望通过excel画个简单的图表看一下数据质量.变化趋势并保存,这时候csv格式的数据就略显不便,因此尝试直接将数据写入excel文件. pandas可以写入一个或者工作簿,两种方法介绍如下: 1.如果是将整个DafaFrame写入excel,则调用to_excel()方法即可实现,示例代码如下: # output为要保存的Dataframe output.to_excel('保存路径 + 文件名.xlsx') 2.有多个数据需要写入多个exce

  • pandas分别写入excel的不同sheet方法

    pandas可以非常方便的写数据到excel,那么如何写多个dataframe到不同的sheet呢? 使用pandas.ExcelWriter import pandas as pd writer = pd.ExcelFile('your_path.xlsx') df1 = pd.DataFrame() df2 = pd.DataFrame() df1.to_excel(writer, sheet_name='df_1') df2.to_excel(writer, sheet_name='df_

  • 解决Python pandas df 写入excel 出现的问题

    学习Python数据分析挖掘实战一书时,在数据预处理阶段,有一节要使用拉格朗日插值法对缺失值补充,代码如下: #-*- coding:utf-8 -*- import pandas as pd import matplotlib.pyplot as plt from scipy.interpolate import lagrange#导入拉格朗日插值函数 inputfile="catering_sale.xls" outputfile="H:\python\file\pyth

  • pandas中的ExcelWriter和ExcelFile的实现方法

    一.简介 pandas中的ExcelFile()和ExcelWriter(),是pandas中对excel表格文件进行读写相关操作非常方便快捷的类,尤其是在对含有多个sheet的excel文件进行操控时非常方便,本文就将针对这两个类的使用方法展开介绍: 二.ExcelFile() 在使用ExcelFile()时需要传入目标excel文件所在路径及文件名称,下面是示例: import pandas as pd demo_excel = pd.ExcelFile(r'D:\demo.xlsx') 查

  • python pandas中DataFrame类型数据操作函数的方法

    python数据分析工具pandas中DataFrame和Series作为主要的数据结构. 本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数. 1)查看DataFrame数据及属性 df_obj = DataFrame() #创建DataFrame对象 df_obj.dtypes #查看各行的数据格式 df_obj['列名'].astype(int)#转换某列的数据类型 df_obj.head() #查看前几行的数据,默认前5行 df_obj.tail() #查看后几

  • Pandas中把dataframe转成array的方法

    使用 df=df.values, 可以把Pandas中的dataframe转成numpy中的array 以上这篇Pandas中把dataframe转成array的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: pandas把dataframe转成Series,改变列中值的类型方法 pandas string转dataframe的方法 pandas.DataFrame 根据条件新建列并赋值的方法 python pandas中DataFram

  • 使用pandas中的DataFrame数据绘制柱状图的方法

    折线图是数据分析的一种手段,但是有时候我们也需要柱状图进行不同数据的可视化量化对比.使用pandas的DataFrame方法进行柱状图的绘制也是比较方便的. 把之前的折线图绘制代码修改一下如下: from pandas import Series,DataFrame from numpy.random import randn import numpy as np import matplotlib.pyplot as plt df = DataFrame(abs(randn(10,5)),co

  • pandas中的数据去重处理的实现方法

    数据去重可以使用duplicated()和drop_duplicates()两个方法. DataFrame.duplicated(subset = None,keep ='first' )返回boolean Series表示重复行 参数:  subset:列标签或标签序列,可选 仅考虑用于标识重复项的某些列,默认情况下使用所有列 keep:{'first','last',False},默认'first' first:标记重复,True除了第一次出现. last:标记重复,True除了最后一次出现

  • pandas中DataFrame重置索引的几种方法

    在pandas中,经常对数据进行处理 而导致数据索引顺序混乱,从而影响数据读取.插入等. 小笔总结了以下几种重置索引的方法: import pandas as pd import numpy as np df = pd.DataFrame(np.arange(20).reshape((5, 4)),columns=['a', 'b', 'c', 'd']) #得到df: a b c d 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 3 12 13 14 15 4 16 17 1

  • Pandas中map(),applymap(),apply()函数的使用方法

    目录 指定pandas对象作为NumPy函数的参数 元素的应用 行/列的应用 pandas.DataFrame,pandas.Series方法 Pandas对象方法的函数应用 适用于Series的每个元素:map(),apply() 应用于DataFrame的每个元素:applymap() 应用于DataFrame的每行和每列:apply() 应用于DataFrame的特定行/列元素 将函数应用于pandas对象(pandas.DataFrame,pandas.Series)时,根据所应用的函数

  • pandas中提取DataFrame某些列的一些方法

    目录 前言 方法一:df[columns] 方法二:df.loc[]:用 label (行名或列名)做索引. 方法三:df.iloc[]: i 表示 integer,用 integer location(行或列的整数位置,从0开始)做索引. 补充:提取所有列名中包含“线索”.“浏览”字段的列 参考: 总结 前言 在处理表格型数据时,一行数据是一个 sample,列就是待提取的特征.怎么选取其中的一些列呢?本文分享一些方法. 使用如下的数据作为例子: import pandas as pd dat

  • 浅谈pandas中DataFrame关于显示值省略的解决方法

    python的pandas库是一个非常好的工具,里面的DataFrame更是常用且好用,最近是越用越觉得设计的漂亮,pandas的很多细节设计的都非常好,有待使用过程中发掘. 好了,发完感慨,说一下最近DataFrame遇到的一个细节: 在使用DataFrame中有时候会遇到表格中的value显示不完全,像下面这样: In: import pandas as pd longString = u'''真正的科学家应当是个幻想家:谁不是幻想家,谁就只能把自己称为实践家.人生的磨难是很多的, 所以我们

  • 浅谈pandas中Dataframe的查询方法([], loc, iloc, at, iat, ix)

    pandas为我们提供了多种切片方法,而要是不太了解这些方法,就会经常容易混淆.下面举例对这些切片方法进行说明. 数据介绍 先随机生成一组数据: In [5]: rnd_1 = [random.randrange(1,20) for x in xrange(1000)] ...: rnd_2 = [random.randrange(1,20) for x in xrange(1000)] ...: rnd_3 = [random.randrange(1,20) for x in xrange(1

随机推荐