如何通过python实现IOU计算代码实例

Intersection over Union(IOU)是一种测量在特定数据集中检测相应物体准确度的一个标准。IoU是一个简单的测量标准,只要是在输出中得出一个预测范围(bounding boxes)的任务都可以用IoU来进行测量。

IoU分数是对象类别分割问题的标准性能度量 [1] 。 给定一组图像,IoU测量给出了在该组图像中存在的对象的预测区域和地面实况区域之间的相似性

计算两个矩形的交并比,通常在检测任务里面可以作为一个检测指标。你的预测bbox和groundtruth之间的差异,就可以通过IOU来体现。

代码如下

#!/usr/bin/env python
# encoding: utf-8

import numpy as np

'''
函数说明:计算两个框的重叠面积
输入:
rec1 第一个框xmin ymin xmax ymax
rec2 第二个框xmin ymin xmax ymax
输出:
iouv 重叠比例 0 没有
'''
def compute_iou(rec1, rec2):

  # computing area of each rectangles
  S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1]) # H1*W1
  S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1]) # H2*W2

  # computing the sum_area
  sum_area = S_rec1 + S_rec2 #总面积

  # find the each edge of intersect rectangle
  left_line = max(rec1[0], rec2[0])
  right_line = min(rec1[2], rec2[2])
  top_line = max(rec1[1], rec2[1])
  bottom_line = min(rec1[3], rec2[3])

  # judge if there is an intersect
  if left_line >= right_line or top_line >= bottom_line:
    #print("没有重合区域")
    return 0
  else:
  #print("有重合区域")
    intersect = (right_line - left_line) * (bottom_line - top_line)
    iouv=(float(intersect) / float(sum_area - intersect))*1.0

    return iouv

'''
函数说明:获取两组匹配结果
输入:
rectA 车位
rectB 车辆
threod 重叠面积最小数值界限 默认0.6
输出:
CarUse 一维数组保存是否占用 1 占用 0 没有

'''
def TestCarUse(rectA,rectB,threod=0.6,debug=0):
  #threod=0.8#设定最小值
  ALength=len(rectA)
  BLength=len(rectB)

  #创建保存匹配结果的矩阵
  recIOU=np.zeros((ALength,BLength),dtype=float,order='C')
  #用于记录车位能够使否占用
  CarUse=np.zeros((1,ALength),dtype=int,order='C')

  for i in range(0,ALength):
    for j in range(0,BLength):
      iou = compute_iou(rectA[i], rectB[j])
      recIOU[i][j]=format(iou,'.3f')
      if iou>=threod:
        CarUse[0,i]=1 #有一个超过匹配认为车位i被占用
  if debug==1:
    print('----匹配矩阵----')
    print(recIOU)
    '''
    print('----车位占用情况----')
    for i in range(0,ALength):
    msg='车位'+str(i)+"-"+str(CarUse[0][i])
    print(msg)
    '''
  return CarUse

if __name__=='__main__':
  #A代表车位
  rectA1 = (30, 10, 70, 20)
  rectA2 = (70, 10, 80, 20)
  rectA =[rectA1,rectA2]
  #B代表检测车辆
  rectB1 = (20, 10, 35, 20)
  rectB2 = (30, 15, 70, 25)
  rectB3 = (70, 10, 80, 20)
  rectB =[rectB1,rectB2,rectB3]

  #获取车位占用情况 rectA车位 rectB车辆 0.6占面积最小比
  CarUse=TestCarUse(rectA,rectB,0.6,1)

  print('----车位占用情况----')
  for i in range(0,len(CarUse)+1):
  msg='车位'+str(i)+"-"+str(CarUse[0][i])
    print(msg)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python实现IOU计算案例

    计算两个矩形的交并比,通常在检测任务里面可以作为一个检测指标.你的预测bbox和groundtruth之间的差异,就可以通过IOU来体现.很简单的算法实现,我也随便写了一个,嗯,很简单. 1. 使用时,请注意bbox四个数字的顺序(y0,x0,y1,x1),顺序不太一样. #!/usr/bin/env python # encoding: utf-8 def compute_iou(rec1, rec2): """ computing IoU :param rec1: (y0

  • python:目标检测模型预测准确度计算方式(基于IoU)

    训练完目标检测模型之后,需要评价其性能,在不同的阈值下的准确度是多少,有没有漏检,在这里基于IoU(Intersection over Union)来计算. 希望能提供一些思路,如果觉得有用欢迎赞我表扬我~ IoU的值可以理解为系统预测出来的框与原来图片中标记的框的重合程度.系统预测出来的框是利用目标检测模型对测试数据集进行识别得到的. 计算方法即检测结果DetectionResult与GroundTruth的交集比上它们的并集,如下图: 蓝色的框是:GroundTruth 黄色的框是:Dete

  • python计算二维矩形IOU实例

    计算交并比:交的面积除以并的面积. 要求矩形框的长和宽应该平行于图片框.不然不能用这样的公式计算. 原理,从一维上来理解:两条红线的距离之和减去黑色线之间的距离就是相交的距离.两条红线之和很容易算,两条黑线之间的距离就是最小的起点到到最大的末点,最小的起点好算,最大的末点就是两点加上各自长度之后的最大值.这就算出了一维的情况,二维的情况一样,计算二次而已. def iou(rect1,rect2): ''' 计算两个矩形的交并比 :param rect1:第一个矩形框.表示为x,y,w,h,其中

  • Python计算机视觉里的IOU计算实例

    其中x1,y1;x2,y2分别表示两个矩形框的中心点 def calcIOU(x1, y1, w1, h1, x2, y2, w2, h2): if((abs(x1 - x2) < ((w1 + w2)/ 2.0)) and (abs(y1-y2) < ((h1 + h2)/2.0))): left = max((x1 - (w1 / 2.0)), (x2 - (w2 / 2.0))) upper = max((y1 - (h1 / 2.0)), (y2 - (h2 / 2.0))) righ

  • python shapely.geometry.polygon任意两个四边形的IOU计算实例

    在目标检测中一个很重要的问题就是NMS及IOU计算,而一般所说的目标检测检测的box是规则矩形框,计算IOU也非常简单,有两种方法: 1. 两个矩形的宽之和减去组合后的矩形的宽就是重叠矩形的宽,同比重叠矩形的高 2. 右下角的minx减去左上角的maxx就是重叠矩形的宽,同比高 然后 IOU = 重叠面积 / (两矩形面积和-重叠面积) 然,不规则四边形就不能通过这种方式来计算,找了好久数学资料,还是没找到答案(鄙人数学渣渣),最后看了白翔老师的textBoxes++论文源码后,知道python

  • python不使用for计算两组、多个矩形两两间的iou方式

    解决问题: 不使用for计算两组.多个矩形两两间的iou 使用numpy广播的方法,在python程序中并不建议使用for语句,python中的for语句耗时较多,如果使用numpy广播的思想将会提速不少. 代码: def calc_iou(bbox1, bbox2): if not isinstance(bbox1, np.ndarray): bbox1 = np.array(bbox1) if not isinstance(bbox2, np.ndarray): bbox2 = np.arr

  • 如何通过python实现IOU计算代码实例

    Intersection over Union(IOU)是一种测量在特定数据集中检测相应物体准确度的一个标准.IoU是一个简单的测量标准,只要是在输出中得出一个预测范围(bounding boxes)的任务都可以用IoU来进行测量. IoU分数是对象类别分割问题的标准性能度量 [1] . 给定一组图像,IoU测量给出了在该组图像中存在的对象的预测区域和地面实况区域之间的相似性 计算两个矩形的交并比,通常在检测任务里面可以作为一个检测指标.你的预测bbox和groundtruth之间的差异,就可以

  • python进行二次方程式计算的实例讲解

    算法,是一种执行步骤,如果我们想要要做一件事情,就会规划好行动步骤.而算法,就是我们所编程序的执行步骤.算法在编程使用过程中至关重要.二次方程式大家很熟悉,是一种整式方程,其未知项的最高次数是2.根的判定是利用判别式判定,可以进行计算复杂数学运算.下面我们就来拿二次方程练练手,在python中求取二次方程. 示例:计算二次方程式 ax**2 + bx + c = 0 注意:首先要导入 math模块 代码: import math import unicodedata def is_number(

  • python绘制双柱形图代码实例

    图表是比干巴巴的表格更直观的表达,简洁.有力.工作中经常遇到的场景是,有一些数值需要定时的监控,比如服务器的连接数.活跃用户数.点击某个按钮的人数,并且通过邮件或者网页展示出来.当我们想关注比数值本身更多的信息(像数值的变化.对比或异常),图表就非常有用了.把数值转化为图片要依赖第三方库的帮忙,在Python之中最好的图表库叫matplotlib.(一直觉得,Python最大的优势就是丰富的第三方库,让你能轻易实现各种需求) matplotlib,顾名思义就是提供了一整套和matlab相似的AP

  • python检测服务器端口代码实例

    这篇文章主要介绍了python检测服务器端口代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 import socket sk = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sk.settimeout(10) try: sk.connect(('127.0.0.1',80)) print('Server port 80 OK!') except Exception: print('

  • python 矢量数据转栅格数据代码实例

    这篇文章主要介绍了python 矢量数据转栅格数据代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 投影包osr与proj4的使用 osr投影转换示例 from osgeo import osr,ogr #定义投影 #wgs84 source=osr.SpatialReference() source.ImportFromEPSG(4326) #google target=osr.SpatialReference() target.Imp

  • Python实现元素等待代码实例

    这篇文章主要介绍了python实现元素等待代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.为什么要元素等待? 在UI自动化过程中,元素的出现受网络环境.设备性能等多种元素影响.因此,元素加载和脚本运行到该元素的时间不一致,会报错:元素无法定位. 简单举下例子:实际UI自动化测试中,点击一个登录控件需要启动一个新activity界面,或需要加载弹框,或请求网络加载数据成功后刷新页面,此时需要等待一段时间,新界面出现了才能继续执行UI操

  • PYTHON绘制雷达图代码实例

    这篇文章主要介绍了PYTHON绘制雷达图代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1.雷达图 import matplotlib.pyplot as plt import numpy as np values = [0.09,-0.05,0.20,-0.02,0.08,0.09,0.03,0.027] x = np.linspace(0,2*np.pi,9)[:-1] c = np.random.random(size=(8,3)

  • 基于python实现蓝牙通信代码实例

    这篇文章主要介绍了基于python实现蓝牙通信代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 安装和示例 linux下安装 sudo apt-get install python-pip libglib2.0-dev sudo pip install bluepy 官方示例 import btle class MyDelegate(btle.DefaultDelegate): def __init__(self, params): bt

  • Python字符串格式化输出代码实例

    这篇文章主要介绍了Python字符串格式化输出代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 使用占位符%s name = '小飞' print('姓名是: %s' % name) format()函数 格式:"{} {}".format(value,value) 示例: name = 'Tom' age = 7 hobby = '玩滑滑梯!' money = 8.5 message= '{}今年{}岁,最喜欢{},有零花钱:

随机推荐