Python中ROC曲线绘制

首先以支持向量机模型为例

先导入需要使用的包,我们将使用roc_curve这个函数绘制ROC曲线!

from sklearn.svm import SVC
from sklearn.metrics import roc_curve
from sklearn.datasets import make_blobs
from sklearn. model_selection import train_test_split
import matplotlib.pyplot as plt
%matplotlib inline

然后使用下面make_blobs函数,生成一个二分类的数据不平衡数据集;

使用train_test_split函数划分训练集和测试集数据;

训练SVC模型。

X,y = make_blobs(n_samples=(4000,500), cluster_std=[7,2], random_state=0)

X_train,X_test,y_train, y_test = train_test_split(X,y,random_state=0)

clf = SVC(gamma=0.05).fit(X_train, y_train)

fpr,tpr, thresholds = roc_curve(y_test,clf.decision_function(X_test))

plt.plot(fpr,tpr,label='ROC')

plt.xlabel('FPR')
plt.ylabel('TPR')

从上面的代码可以看到,我们使用roc_curve函数生成三个变量,分别是fpr,tpr, thresholds,也就是假正例率(FPR)、真正例率(TPR)和阈值。

而其中的fpr,tpr正是我们绘制ROC曲线的横纵坐标,于是我们以变量fpr为横坐标,tpr为纵坐标,绘制相应的ROC图像如下:

值得注意的是上面的支持向量机模型使用的decision_function函数,是自己所特有的,而其他模型不能直接使用。

比如说我们想要使用其他模型(例如决策树模型)的结果绘制ROC,直接套用上面的代码,会报错,会显示没有这个函数。

以决策树模型为例,解决上述问题(适用于除向量机外的模型)

导入决策树模型包以及训练模型的代码省略了,只需要手动改一改就行了,我们直接看绘图的代码!

fpr,tpr, thresholds = roc_curve(y_test,clf.predict_proba(X_test)[:,1])

plt.plot(fpr,tpr,label='ROC')

plt.xlabel('FPR')
plt.ylabel('TPR')

可以看到我们直接把只适用于支持向量机模型的函数decision_function更改成predict_proba(X_test)[:,1]就行了,让我们看看结果:

可以看到哈,决策树模型在这个数据集上的泛化能力不如支持向量机哈!!!学废了吗。

我可以失败,但绝不会认输!

到此这篇关于Python中ROC曲线绘制的文章就介绍到这了,更多相关Python ROC曲线绘制内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 基于python实现ROC曲线绘制广场解析

    ROC 结果 源数据:鸢尾花数据集(仅采用其中的两种类别的花进行训练和检测) Summary features:['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'] 实例:[5.1, 3.5, 1.4, 0.2] target:'setosa' 'versicolor' (0 , 1) 采用回归方法进行拟合得到参数和bias model.fit(data_train, data_tra

  • 利用Python画ROC曲线和AUC值计算

    前言 ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣.这篇文章将先简单的介绍ROC和AUC,而后用实例演示如何python作出ROC曲线图以及计算AUC. AUC介绍 AUC(Area Under Curve)是机器学习二分类模型中非常常用的评估指标,相比于F1-Score对项目的不平衡有更大的容忍性,目前常见的机器学习库中(比如scikit-learn)一般也都是集成该指标的计算,但

  • python实现二分类和多分类的ROC曲线教程

    基本概念 precision:预测为对的当中,原本为对的比例(越大越好,1为理想状态) recall:原本为对的当中,预测为对的比例(越大越好,1为理想状态) F-measure:F度量是对准确率和召回率做一个权衡(越大越好,1为理想状态,此时precision为1,recall为1) accuracy:预测对的(包括原本是对预测为对,原本是错的预测为错两种情形)占整个的比例(越大越好,1为理想状态) fp rate:原本是错的预测为对的比例(越小越好,0为理想状态) tp rate:原本是对的

  • Python中ROC曲线绘制

    首先以支持向量机模型为例 先导入需要使用的包,我们将使用roc_curve这个函数绘制ROC曲线! from sklearn.svm import SVC from sklearn.metrics import roc_curve from sklearn.datasets import make_blobs from sklearn. model_selection import train_test_split import matplotlib.pyplot as plt %matplot

  • python如何将多个模型的ROC曲线绘制在一张图(含图例)

    目录 多条ROC曲线绘制函数 绘制效果 调用格式与方法 详细解释和说明 1.关键函数 2.参数解释 需要注意的小小坑 补充 总结 多条ROC曲线绘制函数 def multi_models_roc(names, sampling_methods, colors, X_test, y_test, save=True, dpin=100): """ 将多个机器模型的roc图输出到一张图上 Args: names: list, 多个模型的名称 sampling_methods: li

  • 解析ROC曲线绘制(python+sklearn+多分类)

    目录 ROC曲线绘制要点(仅记录) 提取数据(标签值和模型预测值) 多分类的ROC曲线画出来并不难 ROC曲线绘制要点(仅记录) 1.ROC用于度量模型性能 2.用于二分类问题,如若遇到多分类也以二分类的思想进行操作. 3.二分类问题代码实现(至于实现,文档说的很清楚了:官方文档) 原理看懂就好,实现直接调用API即可 提取数据(标签值和模型预测值) from sklearn.metrics import roc_curve, auc fpr, tpr, thresholds = roc_cur

  • Python中使用matplotlib绘制mqtt数据实时图像功能

    目录 效果图 mqtt发布 mqtt订阅 matplotlib绘制动态图 matplotlib绘制mqtt数据实时图像 效果图 mqtt发布 本代码中publish是一个死循环,数据一直往外发送. import random import time from paho.mqtt import client as mqtt_client import json from datetime import datetime broker = 'broker.emqx.io' port = 1883 t

  • Python中的图形绘制简单动画实操

    目录 前言: 1.画螺旋曲线代码 2.输出​​ 3​.代码的部分解释 前言: Matplotlib 是一个非常广泛的库,它也支持图形动画. 动画工具以 matplotlib.animation 基类为中心,它提供了一个框架,围绕该框架构建动画功能. 主要接口有TimedAnimation和FuncAnimation,两者中FuncAnimation是最方便使用的. 1.画螺旋曲线代码 import matplotlib.pyplot as plt import matplotlib.animat

  • 在python中,使用scatter绘制散点图的实例

    如下所示: # coding=utf-8 import matplotlib.pyplot as plt x_values=[1,2,3,4,5] y_values=[1,4,9,16,25] # s为点的大小 plt.scatter(x_values,y_values,s=100) # 设置图表标题并给坐标轴加上标签 plt.title("Scatter pic",fontsize=24) plt.xlabel("Value",fontsize=14) plt.y

  • 用python中的matplotlib绘制方程图像代码

    import numpy as np import matplotlib.pyplot as plt def main(): # 设置x和y的坐标范围 x=np.arange(-2,2,0.01) y=np.arange(-2,2,0.01) # 转化为网格 x,y=np.meshgrid(x,y) z=np.power(x,2)+np.power(y,2)-1 plt.contour(x,y,z,0) plt.show() main() 绘制的时候要保证x,y,z的维度相同 结果如下: 以上这

  • 在Python中使用turtle绘制多个同心圆示例

    我就废话不多说了,直接上代码吧! import turtle t = turtle.Pen() my_colors = ("red","green","yellow","black") t.width(4) t.speed(1) for i in range(10): #0 1 2 3 4 t.penup() t.goto(0,-i*10) #0, -100,-200,-300,-400 t.pendown() t.color

随机推荐