Python实现多线程爬表情包详解

目录
  • 课程亮点
  • 环境介绍
  • 模块使用
  • 流程
    • 一. 分析我们想要的数据内容 是可以从哪里获取
    • 二. 代码实现步骤
  • 导入模块
  • 单线程爬取10页数据
  • 多进程爬取10页数据

课程亮点

系统分析目标网页

html标签数据解析方法

海量图片数据一键保存

环境介绍

python 3.8

pycharm

模块使用

requests >>> pip install requests

parsel >>> pip install parsel

time 时间模块 记录运行时间

流程

一. 分析我们想要的数据内容 是可以从哪里获取

表情包 >>> 图片url地址 以及 图片名字

对于开发者工具的使用 >>>

二. 代码实现步骤

1.发送请求

确定一下发送请求 url地址

请求方式是什么 get请求方式 post请求方式

请求头参数 : 防盗链 cookie …

2.获取数据

获取服务器返回的数据内容

response.text 获取文本数据

response.json() 获取json字典数据

response.content 获取二进制数据 保存图片/音频/视频/特定格式文件内容 都是获取二进制数据内容

3.解析数据

提取我们想要的数据内容

I. 可以直接解析处理

II. json字典数据 键值对取值

III. re正则表达式

IV. css选择器

V. xpath

4.保存数据

文本

csv

数据库

本地文件夹

导入模块

import requests  # 数据请求模块 第三方模块 pip install requests
import parsel  # 数据解析模块 第三方模块 pip install parsel
import re  # 正则表达式模块
import time  # 时间模块
import concurrent.futures

单线程爬取10页数据

1. 发送请求

start_time = time.time()

for page in range(1, 11):
    url = f'https://fabiaoqing.com/biaoqing/lists/page/{page}html'
     headers = {
         'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.54 Safari/537.36'
     }
     response = requests.get(url=url, headers=headers)
     # <Response [200]> response 对象 200状态码 表示请求成功

2. 获取数据, 获取文本数据 / 网页源代码

# 在开发者工具上面 元素面板 看到有相应标签数据, 但是我发送请求之后 没有这样的数据返回
# 我们要提取数据, 要根据服务器返回数据内容
# xpath 解析方法 parsel 解析模块  parsel这个模块里面就可以调用xpath解析方法
# print(response.text)

3. 解析数据

# 解析速度 bs4 解析速度会慢一些 如果你想要对于字符串数据内容 直接取值 只能正则表达式
     selector = parsel.Selector(response.text) # 把获取下来html字符串数据内容 转成 selector 对象
     title_list = selector.css('.ui.image.lazy::attr(title)').getall()
     img_list = selector.css('.ui.image.lazy::attr(data-original)').getall()
# 把获取下来的这两个列表 提取里面元素 一一提取出来
# 提取列表元素 for循环 遍历
     for title, img_url in zip(title_list, img_list):

4. 保存数据

# split() 字符串分割的方法 根据列表索引位置取值
# img_name_1 = img_url[-3:] # 通过字符串数据 进行切片
# 从左往右 索引位置 是从 0 开始 从右往左 是 -1开始
         # print(title, img_url)
         title = re.sub(r'[\/:*?"<>|\n]', '_', title)
         # 名字太长 报错
         img_name = img_url.split('.')[-1]   # 通过split() 字符串分割的方法 根据列表索引位置取值
         img_content = requests.get(url=img_url).content # 获取图片的二进制数据内容
         with open('img\\' + title + '.' + img_name, mode='wb') as f:
             f.write(img_content)
         print(title)

多线程爬取10页数据

def get_response(html_url):
    """发送请求"""
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.54 Safari/537.36'
    }
    response = requests.get(url=html_url, headers=headers)
    return response
def get_img_info(html_url):
    """获取图片url地址 以及 图片名字"""
    response = get_response(html_url)
    selector = parsel.Selector(response.text)  # 把获取下来html字符串数据内容 转成 selector 对象
    title_list = selector.css('.ui.image.lazy::attr(title)').getall()
    img_list = selector.css('.ui.image.lazy::attr(data-original)').getall()
    zip_data = zip(title_list, img_list)
    return zip_data
def save(title, img_url):
    """保存数据"""
    title = re.sub(r'[\/:*?"<>|\n]', '_', title)
    # 名字太长 报错
    img_name = img_url.split('.')[-1]  # 通过split() 字符串分割的方法 根据列表索引位置取值
    img_content = requests.get(url=img_url).content  # 获取图片的二进制数据内容
    with open('img\\' + title + '.' + img_name, mode='wb') as f:
        f.write(img_content)
    print(title)

多进程爬取10页数据

def main(html_url):
    zip_data = get_img_info(html_url)
    for title, img_url in zip_data:
        save(title, img_url)
if __name__ == '__main__':
    start_time = time.time()
    exe = concurrent.futures.ThreadPoolExecutor(max_workers=10)
    for page in range(1, 11):
        # 1. 发送请求
        url = f'https://fabiaoqing.com/biaoqing/lists/page/{page}html'
        exe.submit(main, url)
    exe.shutdown()
    end_time = time.time()
    use_time = int(end_time - start_time)
    print('程序耗时: ', use_time)

单线程爬取10页数据 61秒时间

多线程爬取10页数据 19秒时间 >>> 13

多进程爬取10页数据 21秒时间 >>> 18

到此这篇关于Python实现多线程爬表情包详解的文章就介绍到这了,更多相关Python 多线程爬表情包内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python基础进阶之海量表情包多线程爬虫功能的实现

    一.前言 在我们日常聊天的过程中会使用大量的表情包,那么如何去获取表情包资源呢?今天老师带领大家使用python中的爬虫去一键下载海量表情包资源 二.知识点 requests网络库 bs4选择器 文件操作 多线程 三.所用到得库 import os import requests from bs4 import BeautifulSoup 四. 功能 # 多线程程序需要用到的一些包 # 队列 from queue import Queue from threading import Thread

  • Python基于百度AI实现抓取表情包

    本文先抓取网络上的表情图像,然后利用百度 AI 识别表情包上的说明文字,并利用表情文字重命名文件,这样当发表情包时,不需要逐个打开查找,直接根据文件名选择表情并发送. 一.百度 AI 开放平台的 Key 申请方法 本例使用了百度 AI 的 API 接口实现文字识别.因此需要先申请对应的 API 使用权限,具体步骤如下: 在网页浏览器(比如 Chrome 或者火狐) 的地址栏中输入 ai.baidu.com,进入到百度云 AI 的官网,在该页面中单击右上角的 控制台 按钮. 进入到百度云 AI 官

  • Python模拟登录微博并爬取表情包

    一.开发工具 **Python****版本:**3.6.4 相关模块: DecryptLogin模块: argparse模块: requests模块: prettytable模块: tqdm模块: lxml模块: fake_useragent模块: 以及一些Python自带的模块. 二.环境搭建 安装Python并添加到环境变量,pip安装需要的相关模块即可. 三.原理简介 本来这个爬虫是想作为讲python异步爬虫的一个例子的,昨天代码写完测试了一下,结果是我微博账号和ip都直接被封了(并发数

  • Python实现多线程爬表情包详解

    目录 课程亮点 环境介绍 模块使用 流程 一. 分析我们想要的数据内容 是可以从哪里获取 二. 代码实现步骤 导入模块 单线程爬取10页数据 多进程爬取10页数据 课程亮点 系统分析目标网页 html标签数据解析方法 海量图片数据一键保存 环境介绍 python 3.8 pycharm 模块使用 requests >>> pip install requests parsel >>> pip install parsel time 时间模块 记录运行时间 流程 一. 分

  • Python并发:多线程与多进程的详解

    本篇概要 1.线程与多线程 2.进程与多进程 3.多线程并发下载图片 4.多进程并发提高数字运算 关于并发 在计算机编程领域,并发编程是一个很常见的名词和功能了,其实并发这个理念,最初是源于铁路和电报的早期工作.比如在同一个铁路系统上如何安排多列火车,保证每列火车的运行都不会发生冲突. 后来在20世纪60年代,学术界对计算机的并行计算开始进行研究,再后来,操作系统能够进行并发的处理任务,编程语言能够为程序实现并发的功能. 线程与多线程 什么是线程 一个线程可以看成是一个有序的指令流(完成特定任务

  • 对python多线程与global变量详解

    今天早上起来写爬虫,基本框架已经搭好,添加多线程爬取功能时,发现出错: 比如在下载文件的url列表中加入200个url,开启50个线程.我的爬虫-竟然将50个url爬取并全部命名为0.html,也就是说,最后的下载结果,是有1个0.html(重复的覆盖了),还有1-150.下面是我的代码: x = str(theguardian_globle.g) #x为给下载的文件命的名 filePath = "E://wgetWeiBao//"+x+".html" try: w

  • python根据用户需求输入想爬取的内容及页数爬取图片方法详解

    本次小编向大家介绍的是根据用户的需求输入想爬取的内容及页数. 主要步骤: 1.提示用户输入爬取的内容及页码. 2.根据用户输入,获取网址列表. 3.模拟浏览器向服务器发送请求,获取响应. 4.利用xpath方法找到图片的标签. 5.保存数据. 代码用面向过程的形式编写的. 关键字:requests库,xpath,面向过程 现在就来讲解代码书写的过程: 1.导入模块 import parsel # 该模块主要用来将请求后的字符串格式解析成re,xpath,css进行内容的匹配 import req

  • python多线程和多进程关系详解

    关于多线程的大概讲解: 在Python的标准库中给出了2个模块:_thread和threading,_thread是低级模块不支持守护线程,当主线程退出了时,全部子线程都会被强制退出了.而threading是高级模块,用作对_thread进行了封装支持守护线程.在大部分状况下人们只需要采用threading这个高级模块即可. 关于多进程的大概讲解: 多进程是multiprocessing模块给出远程与本地的并发,在一个multiprocessing库的采用场景下,全部的子进程全是由一个父进程运行

  • python中模块的__all__属性详解

    python模块中的__all__属性,可用于模块导入时限制,如: from module import * 此时被导入模块若定义了__all__属性,则只有__all__内指定的属性.方法.类可被导入. 若没定义,则导入模块内的所有公有属性,方法和类 # kk.py class A(): def __init__(self,name,age): self.name=name self.age=age class B(): def __init__(self,name,id): self.nam

  • Python 通过URL打开图片实例详解

    Python 通过URL打开图片实例详解 不论是用OpenCV还是PIL,skimage等库,在之前做图像处理的时候,几乎都是读取本地的图片.最近尝试爬虫爬取图片,在保存之前,我希望能先快速浏览一遍图片,然后有选择性的保存.这里就需要从url读取图片了.查了很多资料,发现有这么几种方法,这里做个记录. 本文用到的图片URL如下: img_src = 'http://wx2.sinaimg.cn/mw690/ac38503ely1fesz8m0ov6j20qo140dix.jpg' 1.用Open

  • Python命令启动Web服务器实例详解

    Python命令启动Web服务器实例详解 利用Python自带的包可以建立简单的web服务器.在DOS里cd到准备做服务器根目录的路径下,输入命令: python -m Web服务器模块 [端口号,默认8000] 例如: python -m SimpleHTTPServer 8080 然后就可以在浏览器中输入 http://localhost:端口号/路径 来访问服务器资源. 例如: http://localhost:8080/index.htm(当然index.htm文件得自己创建) 其他机器

  • Python 网页解析HTMLParse的实例详解

    Python 网页解析HTMLParse的实例详解 使用python将网页抓取下来之后,下一步我们就应该解析网页,提取我们所需要的内容了,在python里提供了一个简单的解析模块HTMLParser类,使用起来也是比较简单的,解析语法没有用到XPath类似的简洁模式,但新手用起来还是比较容易的,看下面的例子: 现在一个模拟的html文件: <html> <title id='main' mouse='你好'>我是标题</title><body>我是内容<

  • Python内建模块struct实例详解

    本文研究的主要是Python内建模块struct的相关内容,具体如下. Python中变量的类型只有列表.元祖.字典.集合等高级抽象类型,并没有像c中定义了位.字节.整型等底层初级类型.因为Python本来就是高级解释性语言,运行的时候都是经过翻译后再在底层运行.如何打通Python和其他语言之间的类型定义障碍,Python的内建模块struct完全解决了所有问题. 知识介绍: 在struct模块中最最常用的三个: (1)struct.pack:用于将Python的值根据格式符,转换为字符串(因

随机推荐