Tensorflow 实现线性回归模型的示例代码

目录
  • 1.线性与非线性回归
  • 案例讲解
    • 1.数据集
    • 2.读取训练数据Income.csv并可视化展示
    • 3.利用Tensorflow搭建和训练神经网络模型【线性回归模型的建立】
    • 4. 模型预测

1.线性与非线性回归

线性回归 Linear Regression:两个变量之间的关系是一次函数关系的——图像是直线,叫做线性。线性是指广义的线性,也就是数据与数据之间的关系,如图x1。

非线性回归:两个变量之间的关系不是一次函数关系的——图像不是直线,叫做非线性,如图x2。

一元线性回归:只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。函数表达: y=bx+a。

多元线性回归:包括两个或两个以上相互独立的自变量(x1,x2,x3...),且因变量(y)和自变量之间是线性关系,则称为多元线性回归分析。函数表达:

线性回归在深度学习中的应用: 在深度学习中,我们就是要根据已知数据点(自变量)和因变量(y)去训练模型得到未知参数a和b、 和的具体值,从而得到预测模型,在这里()相当于深度学习中目标对象的特征,(y)相当于具体的目标对象。得到预测模型之后再对未知的自变量x进行预测,得到预测的y。

线性回归问题与分类问题:与回归相对的是分类问题(classification),分类问题预测输出的y值是有限的,预测值y只能是有限集合内的一个。而当要预测值y输出集合是无限且连续,我们称之为回归。比如,天气预报预测明天是否下雨,是一个二分类问题;预测明天的降雨量多少,就是一个回归问题。

案例讲解

了解基础概念之后,使用Tensorflow实现一个简单的一元线性回归问题, 调查学历和收入之间的线性关系,如下所示:

求解未知参数a和b的方法:

1.数据集

模型训练的数据存储在一个.csv文件里,Education代表学历【自变量x】,Income代表收入【因变量y】。

目标:我们要利用已知的Education和income数据值,求解未知参数a和b的值,得到Education和Income之间的线性关系。

2.读取训练数据Income.csv并可视化展示

import tensorflow as tf
import numpy as np
# 1.查看tensorflow版本
print("Tensorflow Version{}".format(tf.__version__))

# 2.pandas读取包含线性关系的.csv文件
import pandas as pd
data = pd.read_csv('D:\Project\TesorFlow\datasets\Income.csv')
print(data)

# 3.绘制线性回归关系-散点图
import matplotlib.pyplot as plt
plt.scatter(data.Education,data.Income)
plt.show()

3.利用Tensorflow搭建和训练神经网络模型【线性回归模型的建立】

# 4.顺序模型squential的建立
# 顺序模型是指网络是一层一层搭建的,前面一层的输出是后一层的输入。
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(1,input_shape=(1,)))
# dense(输出数据的维度,输入数据的维度)

# 5.查看模型的结构
model.summary()

# 6.编译模型 - 配置的过程, 优化算法方式(梯度下降)、损失函数
# Adam优化器的学习速率默认为0.01
model.compile(optimizer='adam',
              loss = 'mse')

# 7.训练模型,记录模型的训练过程 history
# 训练过程是loss函数值降低的过程:
# 即不断逼近最优的a和b参数值的过程
# 这个过程要训练很多次epoch,epoch是指对所有训练数据训练的次数
history = model.fit(x,y,epochs=100)

model.summary(): 查看我们创建的神经网络模型,这里我们只添加了一层全连接层。

训练过程:这里只训练100个epoch.

4. 模型预测

# 8.已知数据预测
model.predict(x)
print(model.predict(x))

# 9.随机数据预测:
# """
# 注意:pandas数据结构是数据框DataFrame和 序列 Series
# 序列(Series)是二维表格中的一列或者一行。实际上,当访问DataFrame的一行时,pandas自动把该行转换为序列;当访问DataFrame的一列时,Pandas也自动把该列转换为序列。
# 序列是由一组数据(各种NumPy数据类型),以及一组与之相关的数据标签(索引)组成,序列不要求数据类型是相同的,序列可以看作是一维数组(一行或一列)
# 序列的表现形式为:索引在左边,值在右边。由于没有显式为Series指定索引,pandas会自动创建一个从0到N-1的整数型索引。
# """
# test_predict = model.predict(pd.Series([20]))  # 所以这里输入时需要将其转换为Series结构
test_predict = model.predict(pd.Series([10,20]))  # 预测的数据为10和20
print(test_predict)
print(pd.DataFrame([(10,20,30)]))

已知结果的数据预测的结果: 查看我们创建的神经网络模型,这里我们只添加了一层全连接层。

未知结果的数据预测的结果: 可以看到预测结果很差,说明我们的神经网络模型并没有训练好,求解得到的未知参数的a和b的值很差。

解决办法:: 加深神经网络模型的参数,训练更多的次数epoch或者添加实验数据。

sklearn库有写好了的线性回归函数,from sklearn.linear_model import LinearRegression直接导入即可。

到此这篇关于Tensorflow 实现线性回归模型的示例代码的文章就介绍到这了,更多相关Tensorflow 线性回归模型内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • TensorFlow神经网络构造线性回归模型示例教程

    先制作一些数据: import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 随机生成1000个点,围绕在y=0.1x+0.3的直线周围 num_points = 1000 vectors_set = [] for i in range(num_points): x1 = np.random.normal(0.0, 0.55) # np.random.normal(mean,stdev,size)给出均

  • 使用TensorFlow实现简单线性回归模型

    本文使用TensorFlow实现最简单的线性回归模型,供大家参考,具体内容如下 线性拟合y=2.7x+0.6,代码如下: import tensorflow as tf import numpy as np import matplotlib.pyplot as plt n = 201 # x点数 X = np.linspace(-1, 1, n)[:,np.newaxis] # 等差数列构建X,[:,np.newaxis]这个是shape,这一行构建了一个n维列向量([1,n]的矩阵) noi

  • 使用tensorflow实现线性回归

    本文实例为大家分享了tensorflow实现线性回归的具体代码,供大家参考,具体内容如下 一.随机生成1000个点,分布在y=0.1x+0.3直线周围,并画出来 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt num_points = 1000 vectors_set = [] for i in range(num_points): x1 = np.random.normal(0.0,0.55)

  • 用tensorflow构建线性回归模型的示例代码

    用tensorflow构建简单的线性回归模型是tensorflow的一个基础样例,但是原有的样例存在一些问题,我在实际调试的过程中做了一点自己的改进,并且有一些体会. 首先总结一下tf构建模型的总体套路 1.先定义模型的整体图结构,未知的部分,比如输入就用placeholder来代替. 2.再定义最后与目标的误差函数. 3.最后选择优化方法. 另外几个值得注意的地方是: 1.tensorflow构建模型第一步是先用代码搭建图模型,此时图模型是静止的,是不产生任何运算结果的,必须使用Session

  • TensorFlow实现简单线性回归

    本文实例为大家分享了TensorFlow实现简单线性回归的具体代码,供大家参考,具体内容如下 简单的一元线性回归 一元线性回归公式: 其中x是特征:[x1,x2,x3,…,xn,]Tw是权重,b是偏置值 代码实现 导入必须的包 import tensorflow as tf import matplotlib.pyplot as plt import numpy as np import os # 屏蔽warning以下的日志信息 os.environ['TF_CPP_MIN_LOG_LEVEL

  • Tensorflow使用支持向量机拟合线性回归

    支持向量机可以用来拟合线性回归. 相同的最大间隔(maximum margin)的概念应用到线性回归拟合.代替最大化分割两类目标是,最大化分割包含大部分的数据点(x,y).我们将用相同的iris数据集,展示用刚才的概念来进行花萼长度与花瓣宽度之间的线性拟合. 相关的损失函数类似于max(0,|yi-(Axi+b)|-ε).ε这里,是间隔宽度的一半,这意味着如果一个数据点在该区域,则损失等于0. # SVM Regression #---------------------------------

  • 详解TensorFlow2实现线性回归

    目录 概述 MSE 线性回归 公式 梯度下降 线性回归实现 计算 MSE 梯度下降 迭代训练 主函数 完整代码 概述 线性回归 (Linear Regression) 是利用回归分析来确定两种或两种以上变量间相互依赖的定量关系. 对线性回归还不是很了解的同学可以看一下这篇文章: python深度总结线性回归 MSE 均方误差 (Mean Square Error): 是用来描述连续误差的一种方法. 公式: y_predict: 我们预测的值y_real: 真实值 线性回归 公式 w: weigh

  • Tensorflow 实现线性回归模型的示例代码

    目录 1.线性与非线性回归 案例讲解 1.数据集 2.读取训练数据Income.csv并可视化展示 3.利用Tensorflow搭建和训练神经网络模型[线性回归模型的建立] 4. 模型预测 1.线性与非线性回归 线性回归 Linear Regression:两个变量之间的关系是一次函数关系的——图像是直线,叫做线性.线性是指广义的线性,也就是数据与数据之间的关系,如图x1. 非线性回归:两个变量之间的关系不是一次函数关系的——图像不是直线,叫做非线性,如图x2. 一元线性回归:只包括一个自变量和

  • Python实现RabbitMQ6种消息模型的示例代码

    RabbitMQ与Redis对比 ​ RabbitMQ是一种比较流行的消息中间件,之前我一直使用redis作为消息中间件,但是生产环境比较推荐RabbitMQ来替代Redis,所以我去查询了一些RabbitMQ的资料.相比于Redis,RabbitMQ优点很多,比如: 具有消息消费确认机制 队列,消息,都可以选择是否持久化,粒度更小.更灵活. 可以实现负载均衡 RabbitMQ应用场景 异步处理:比如用户注册时的确认邮件.短信等交由rabbitMQ进行异步处理 应用解耦:比如收发消息双方可以使用

  • 基于Cesium实现拖拽3D模型的示例代码

    目录 添加基站模型 拖拽 这个地方是想实现一个什么效果呢?就是使用 cesium 在地图上添加一个3D模型,然后实现拖拽效果. 添加基站模型 然后这篇博文介绍的主要不是添加模型,但是也简单把代码直接粘贴过来吧,就不详细说了. // 添加基站模型 function addSite() { let position = Cesium.Cartesian3.fromDegrees(116.236393, 40.075119, 0); // 设置模型方向 let hpRoll = new Cesium.

  • python实现感知机模型的示例

    from sklearn.linear_model import Perceptron import argparse #一个好用的参数传递模型 import numpy as np from sklearn.datasets import load_iris #数据集 from sklearn.model_selection import train_test_split #训练集和测试集分割 from loguru import logger #日志输出,不清楚用法 #python is a

  • Three.js实现绘制字体模型示例代码

    前言 本文主要给大家介绍了关于利用Three.js绘制字体模型的相关内容,使用three.js绘制字体模型,没有想象当中那么难.下面话不多说了,来一起看看详细的介绍: 首先你需要实例化 THREE.FontLoader() 来进行json格式的文字格式加载,在加载成功的回调函数里面进行创建网格. 然后通过THREE.TextBufferGeometry或者THREE.TextGeometry方法进行网格创建,并将需要设置的问题传入. 再设置一个纹理,通过THREE.Mesh()函数创建成图形添加

  • Python scikit-learn 做线性回归的示例代码

    一.概述 机器学习算法在近几年大数据点燃的热火熏陶下已经变得被人所"熟知",就算不懂得其中各算法理论,叫你喊上一两个著名算法的名字,你也能昂首挺胸脱口而出.当然了,算法之林虽大,但能者还是有限,能适应某些环境并取得较好效果的算法会脱颖而出,而表现平平者则被历史所淡忘.随着机器学习社区的发展和实践验证,这群脱颖而出者也逐渐被人所认可和青睐,同时获得了更多社区力量的支持.改进和推广. 以最广泛的分类算法为例,大致可以分为线性和非线性两大派别.线性算法有著名的逻辑回归.朴素贝叶斯.最大熵等,

  • TensorFLow 数学运算的示例代码

    一.Tensor 之间的运算规则 相同大小 Tensor 之间的任何算术运算都会将运算应用到元素级 不同大小 Tensor(要求dimension 0 必须相同) 之间的运算叫做广播(broadcasting) Tensor 与 Scalar(0维 tensor) 间的算术运算会将那个标量值传播到各个元素 Note: TensorFLow 在进行数学运算时,一定要求各个 Tensor 数据类型一致 二.常用操作符和基本数学函数 大多数运算符都进行了重载操作,使我们可以快速使用 (+ - * /)

随机推荐