Tensorflow获取张量Tensor的具体维数实例
获取Tensor的维数
>>> import tensorflow as tf >>> tf.__version__ '1.2.0-rc1' >>> x=tf.placeholder(dtype=float32,shape=[1,2,3,4]) >>> x=tf.placeholder(dtype=tf.float32,shape=[1,2,3,4]) >>> x.shape TensorShape([Dimension(1), Dimension(2), Dimension(3), Dimension(4)]) >>> x.get_shape() TensorShape([Dimension(1), Dimension(2), Dimension(3), Dimension(4)]) # 返回tuple >>> x.shape[2] Dimension(3) >>> x.get_shape()[2] Dimension(3) # 获取具体维度数值 >>> x.shape[2].value 3 >>> x.get_shape()[2].value 3 # 也可以将TensorShape变量转化为list类型,然后直接按照索引取值 >>> x.shape.as_list() [1, 2, 3, 4] >>> x.shape.as_list() [1, 2, 3, 4] # 可以与int型数值比较 >>> x.shape[2] == 3 True >>> x.get_shape()[2] == 3 True
以上这篇Tensorflow获取张量Tensor的具体维数实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
tensorflow 获取所有variable或tensor的name示例
获取所有variable(每个op中可训练的张量)的name: for variable_name in tf.global_variables(): print(variable_name) 获取所有tensor(每个op的输出张量)的name: for tensor_name in tf.contrib.graph_editor.get_tensors(tf.get_default_graph()): print(tensor_name) 获取所有op及其输入输出的name: with tf
-
tensorflow之获取tensor的shape作为max_pool的ksize实例
实验发现,tensorflow的tensor张量的shape不支持直接作为tf.max_pool的参数,比如下面这种情况(一个错误的示范): self.max_pooling1 = tf.nn.max_pool(self.l_6, ksize = [1, tf.shape(self.F1)[0], 1, 1], strides = [1, 1, 1, 1], padding = 'VALID', name = 'maxpool1') 我在max_pool的过程中想对特征每一列进行max_pool
-
Tensorflow 实现修改张量特定元素的值方法
最近在做一个摘要生成的项目,过程中遇到了很多小问题,从网上查阅了许多别人解决不同问题的方法,自己也在旁边开了个jupyter notebook搞些小实验,这里总结一下遇到的一些问题. Tensorflow用起来不是很顺手,很大原因在于tensor这个玩意儿,并不像数组或者列表那么的直观,直接print的话只能看到 Tensor(-) 这样的提示.比如下面这个问题,我们想要修改张量特定位置上的某个数值,操作起来就相对麻烦一些.和array一样,张量也是可以分段读取的,比如 tensor[1:10]
-
tensorflow实现对张量数据的切片操作方式
如下所示: import tensorflow as tf a=tf.constant([[[1,2,3,4],[4,5,6,7],[7,8,9,10]], [[11,12,13,14],[20,21,22,23],[15,16,17,18]]]) print(a.shape) b,c=tf.split(a,2,0) #参数1.张量 2.获得的切片数 3.切片的维度 将两个切片分别赋值给b,c print(b.shape) print(c.shape with tf.Session() as s
-
浅谈tensorflow中张量的提取值和赋值
tf.gather和gather_nd从params中收集数值,tf.scatter_nd 和 tf.scatter_nd_update用updates更新某一张量.严格上说,tf.gather_nd和tf.scatter_nd_update互为逆操作. 已知数值的位置,从张量中提取数值:tf.gather, tf.gather_nd tf.gather indices每个元素(标量)是params某个axis的索引,tf.gather_nd 中indices最后一个阶对应于索引值. tf.ga
-
Tensorflow获取张量Tensor的具体维数实例
获取Tensor的维数 >>> import tensorflow as tf >>> tf.__version__ '1.2.0-rc1' >>> x=tf.placeholder(dtype=float32,shape=[1,2,3,4]) >>> x=tf.placeholder(dtype=tf.float32,shape=[1,2,3,4]) >>> x.shape TensorShape([Dimensi
-
在keras 中获取张量 tensor 的维度大小实例
在进行keras 网络计算时,有时候需要获取输入张量的维度来定义自己的层.但是由于keras是一个封闭的接口.因此在调用由于是张量不能直接用numpy 里的A.shape().这样的形式来获取.这里需要调用一下keras 作为后端的方式来获取.当我们想要操作时第一时间就想到直接用 shape ()函数.其实keras 中真的有shape()这个函数. shape(x)返回一个张量的符号shape,符号shape的意思是返回值本身也是一个tensor, 示例: >>> from keras
-
TensorFlow获取加载模型中的全部张量名称代码
核心代码如下: [tensor.name for tensor in tf.get_default_graph().as_graph_def().node] 实例代码:(加载了Inceptino_v3的模型,并获取该模型所有节点的名称) # -*- coding: utf-8 -*- import tensorflow as tf import os model_dir = 'C:/Inception_v3' model_name = 'output_graph.pb' # 读取并创建一个图gr
-
浅谈tensorflow使用张量时的一些注意点tf.concat,tf.reshape,tf.stack
有一段时间没用tensorflow了,现在跑实验还是存在一些坑了,主要是关于张量计算的问题.tensorflow升级1.0版本后与以前的版本并不兼容,可能出现各种奇奇怪怪的问题. 1 tf.concat函数 tensorflow1.0以前函数用法:tf.concat(concat_dim, values, name='concat'),第一个参数为连接的维度,可以将几个向量按指定维度连接起来. 如: t1 = [[1, 2, 3], [4, 5, 6]] t2 = [[7, 8, 9], [10
-
tensorflow 获取变量&打印权值的实例讲解
在使用tensorflow中,我们常常需要获取某个变量的值,比如:打印某一层的权重,通常我们可以直接利用变量的name属性来获取,但是当我们利用一些第三方的库来构造神经网络的layer时,存在一种情况:就是我们自己无法定义该层的变量,因为是自动进行定义的. 比如用tensorflow的slim库时: <span style="font-size:14px;">def resnet_stack(images, output_shape, hparams, scope=None
-
tensorflow 获取checkpoint中的变量列表实例
方式1:静态获取,通过直接解析checkpoint文件获取变量名及变量值 通过 reader = tf.train.NewCheckpointReader(model_path) 或者通过: from tensorflow.python import pywrap_tensorflow reader = pywrap_tensorflow.NewCheckpointReader(model_path) 代码: model_path = "./checkpoints/model.ckpt-7500
-
pytorch 实现张量tensor,图片,CPU,GPU,数组等的转换
1, 创建pytorch 的Tensor张量: torch.rand((3,224,224)) #创建随机值的三维张量,大小为(3,224,224) torch.Tensor([3,2]) #创建张量,[3,2] 2, cpu上的tensor和GPU即pytorch创建的tensor的相互转化 b = a.cpu() # GPU → CPU a = b.cuda() #CPU → GPU 3, tensor和numpy的转化 b = a.numpy() # tensor转化为 numpy数组 a
-
pytorch查看通道数 维数 尺寸大小方式
查看tensor x.shape # 尺寸 x.size() # 形状 x.ndim # 维数 例如 import torch parser = argparse.ArgumentParser(description='PyTorch') parser.add_argument('--img_w', default=144, type=int, metavar='imgw', help='img width') parser.add_argument('--img_h', default=288
随机推荐
- PHP生成静态页
- C#编写的Base64加密和解密类
- 几款黑客工具的使用方法
- MySQL命令行中给表添加一个字段(字段名、是否为空、默认值)
- 推荐30个新鲜出炉的精美 jQuery 效果
- javascript创建对象的3种方法
- 预防黑客侵入你正在使用的Win系统(隐藏帐号)
- python实现异步回调机制代码分享
- 从请求管道深入剖析HttpModule的实现机制图文介绍
- ASP.NET MVC中解析淘宝网页出现乱码问题的解决方法
- PHP中Restful api 错误提示返回值实现思路
- PHP提示Deprecated: mysql_connect(): The mysql extension is deprecated的解决方法
- js选项卡的实现方法
- C++ 数据结构线性表-数组实现
- 简单介绍下MYSQL的索引类型
- JavaScript 布尔操作符解析 && || !
- jQuery遍历json的方法分析
- 详解Vue + Vuex 如何使用 vm.$nextTick
- nodejs+mongodb+vue前后台配置ueditor的示例代码
- springboot整合EHCache的实践方案