Pytorch使用MNIST数据集实现基础GAN和DCGAN详解

原始生成对抗网络Generative Adversarial Networks GAN包含生成器Generator和判别器Discriminator,数据有真实数据groundtruth,还有需要网络生成的“fake”数据,目的是网络生成的fake数据可以“骗过”判别器,让判别器认不出来,就是让判别器分不清进入的数据是真实数据还是fake数据。总的来说是:判别器区分真实数据和fake数据的能力越强越好;生成器生成的数据骗过判别器的能力越强越好,这个是矛盾的,所以只能交替训练网络。

需要搭建生成器网络和判别器网络,训练的时候交替训练。

首先训练判别器的参数,固定生成器的参数,让判别器判断生成器生成的数据,让其和0接近,让判别器判断真实数据,让其和1接近;

接着训练生成器的参数,固定判别器的参数,让生成器生成的数据进入判别器,让判断结果和1接近。生成器生成数据需要给定随机初始值

线性版:

import torch
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms
from torch import optim
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.gridspec as gridspec

def showimg(images,count):
 images=images.detach().numpy()[0:16,:]
 images=255*(0.5*images+0.5)
 images = images.astype(np.uint8)
 grid_length=int(np.ceil(np.sqrt(images.shape[0])))
 plt.figure(figsize=(4,4))
 width = int(np.sqrt((images.shape[1])))
 gs = gridspec.GridSpec(grid_length,grid_length,wspace=0,hspace=0)
 # gs.update(wspace=0, hspace=0)
 print('starting...')
 for i, img in enumerate(images):
 ax = plt.subplot(gs[i])
 ax.set_xticklabels([])
 ax.set_yticklabels([])
 ax.set_aspect('equal')
 plt.imshow(img.reshape([width,width]),cmap = plt.cm.gray)
 plt.axis('off')
 plt.tight_layout()
 print('showing...')
 plt.tight_layout()
 plt.savefig('./GAN_Image/%d.png'%count, bbox_inches='tight')

def loadMNIST(batch_size): #MNIST图片的大小是28*28
 trans_img=transforms.Compose([transforms.ToTensor()])
 trainset=MNIST('./data',train=True,transform=trans_img,download=True)
 testset=MNIST('./data',train=False,transform=trans_img,download=True)
 # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 trainloader=DataLoader(trainset,batch_size=batch_size,shuffle=True,num_workers=10)
 testloader = DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=10)
 return trainset,testset,trainloader,testloader

class discriminator(nn.Module):
 def __init__(self):
 super(discriminator,self).__init__()
 self.dis=nn.Sequential(
  nn.Linear(784,300),
  nn.LeakyReLU(0.2),
  nn.Linear(300,150),
  nn.LeakyReLU(0.2),
  nn.Linear(150,1),
  nn.Sigmoid()
 )
 def forward(self, x):
 x=self.dis(x)
 return x

class generator(nn.Module):
 def __init__(self,input_size):
 super(generator,self).__init__()
 self.gen=nn.Sequential(
  nn.Linear(input_size,150),
  nn.ReLU(True),
  nn.Linear(150,300),
  nn.ReLU(True),
  nn.Linear(300,784),
  nn.Tanh()
 )
 def forward(self, x):
 x=self.gen(x)
 return x

if __name__=="__main__":
 criterion=nn.BCELoss()
 num_img=100
 z_dimension=100
 D=discriminator()
 G=generator(z_dimension)
 trainset, testset, trainloader, testloader = loadMNIST(num_img) # data
 d_optimizer=optim.Adam(D.parameters(),lr=0.0003)
 g_optimizer=optim.Adam(G.parameters(),lr=0.0003)
 '''
 交替训练的方式训练网络
 先训练判别器网络D再训练生成器网络G
 不同网络的训练次数是超参数
 也可以两个网络训练相同的次数
 这样就可以不用分别训练两个网络
 '''
 count=0
 #鉴别器D的训练,固定G的参数
 epoch = 100
 gepoch = 1
 for i in range(epoch):
 for (img, label) in trainloader:
  # num_img=img.size()[0]
  real_img=img.view(num_img,-1)#展开为28*28=784
  real_label=torch.ones(num_img)#真实label为1
  fake_label=torch.zeros(num_img)#假的label为0

  #compute loss of real_img
  real_out=D(real_img) #真实图片送入判别器D输出0~1
  d_loss_real=criterion(real_out,real_label)#得到loss
  real_scores=real_out#真实图片放入判别器输出越接近1越好

  #compute loss of fake_img
  z=torch.randn(num_img,z_dimension)#随机生成向量
  fake_img=G(z)#将向量放入生成网络G生成一张图片
  fake_out=D(fake_img)#判别器判断假的图片
  d_loss_fake=criterion(fake_out,fake_label)#假的图片的loss
  fake_scores=fake_out#假的图片放入判别器输出越接近0越好

  #D bp and optimize
  d_loss=d_loss_real+d_loss_fake
  d_optimizer.zero_grad() #判别器D的梯度归零
  d_loss.backward() #反向传播
  d_optimizer.step() #更新判别器D参数

  #生成器G的训练compute loss of fake_img
  for j in range(gepoch):
  fake_label = torch.ones(num_img) # 真实label为1
  z = torch.randn(num_img, z_dimension) # 随机生成向量
  fake_img = G(z) # 将向量放入生成网络G生成一张图片
  output = D(fake_img) # 经过判别器得到结果
  g_loss = criterion(output, fake_label)#得到假的图片与真实标签的loss
  #bp and optimize
  g_optimizer.zero_grad() #生成器G的梯度归零
  g_loss.backward() #反向传播
  g_optimizer.step()#更新生成器G参数
 print('Epoch [{}/{}], d_loss: {:.6f}, g_loss: {:.6f} '
   'D real: {:.6f}, D fake: {:.6f}'.format(
  i, epoch, d_loss.data[0], g_loss.data[0],
  real_scores.data.mean(), fake_scores.data.mean()))
 showimg(fake_img,count)
 # plt.show()
 count += 1

这里的图分别是 epoch为0、50、100、150、190的运行结果,可以看到图片中的数字并不单一

卷积版 Deep Convolutional Generative Adversarial Networks:

import torch
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms
from torch import optim
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
from torch.autograd import Variable

import matplotlib.gridspec as gridspec
import os

def showimg(images,count):
 images=images.to('cpu')
 images=images.detach().numpy()
 images=images[[6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96]]
 images=255*(0.5*images+0.5)
 images = images.astype(np.uint8)
 grid_length=int(np.ceil(np.sqrt(images.shape[0])))
 plt.figure(figsize=(4,4))
 width = images.shape[2]
 gs = gridspec.GridSpec(grid_length,grid_length,wspace=0,hspace=0)
 print(images.shape)
 for i, img in enumerate(images):
 ax = plt.subplot(gs[i])
 ax.set_xticklabels([])
 ax.set_yticklabels([])
 ax.set_aspect('equal')
 plt.imshow(img.reshape(width,width),cmap = plt.cm.gray)
 plt.axis('off')
 plt.tight_layout()
# print('showing...')
 plt.tight_layout()
# plt.savefig('./GAN_Imaget/%d.png'%count, bbox_inches='tight')

def loadMNIST(batch_size): #MNIST图片的大小是28*28
 trans_img=transforms.Compose([transforms.ToTensor()])
 trainset=MNIST('./data',train=True,transform=trans_img,download=True)
 testset=MNIST('./data',train=False,transform=trans_img,download=True)
 # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 trainloader=DataLoader(trainset,batch_size=batch_size,shuffle=True,num_workers=10)
 testloader = DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=10)
 return trainset,testset,trainloader,testloader

class discriminator(nn.Module):
 def __init__(self):
 super(discriminator,self).__init__()
 self.dis=nn.Sequential(
  nn.Conv2d(1,32,5,stride=1,padding=2),
  nn.LeakyReLU(0.2,True),
  nn.MaxPool2d((2,2)),

  nn.Conv2d(32,64,5,stride=1,padding=2),
  nn.LeakyReLU(0.2,True),
  nn.MaxPool2d((2,2))
 )
 self.fc=nn.Sequential(
  nn.Linear(7 * 7 * 64, 1024),
  nn.LeakyReLU(0.2, True),
  nn.Linear(1024, 1),
  nn.Sigmoid()
 )
 def forward(self, x):
 x=self.dis(x)
 x=x.view(x.size(0),-1)
 x=self.fc(x)
 return x

class generator(nn.Module):
 def __init__(self,input_size,num_feature):
 super(generator,self).__init__()
 self.fc=nn.Linear(input_size,num_feature) #1*56*56
 self.br=nn.Sequential(
  nn.BatchNorm2d(1),
  nn.ReLU(True)
 )
 self.gen=nn.Sequential(
  nn.Conv2d(1,50,3,stride=1,padding=1),
  nn.BatchNorm2d(50),
  nn.ReLU(True),

  nn.Conv2d(50,25,3,stride=1,padding=1),
  nn.BatchNorm2d(25),
  nn.ReLU(True),

  nn.Conv2d(25,1,2,stride=2),
  nn.Tanh()
 )
 def forward(self, x):
 x=self.fc(x)
 x=x.view(x.size(0),1,56,56)
 x=self.br(x)
 x=self.gen(x)
 return x

if __name__=="__main__":
 criterion=nn.BCELoss()
 num_img=100
 z_dimension=100
 D=discriminator()
 G=generator(z_dimension,3136) #1*56*56
 trainset, testset, trainloader, testloader = loadMNIST(num_img) # data
 D=D.cuda()
 G=G.cuda()
 d_optimizer=optim.Adam(D.parameters(),lr=0.0003)
 g_optimizer=optim.Adam(G.parameters(),lr=0.0003)
 '''
 交替训练的方式训练网络
 先训练判别器网络D再训练生成器网络G
 不同网络的训练次数是超参数
 也可以两个网络训练相同的次数,
 这样就可以不用分别训练两个网络
 '''
 count=0
 #鉴别器D的训练,固定G的参数
 epoch = 100
 gepoch = 1
 for i in range(epoch):
 for (img, label) in trainloader:
  # num_img=img.size()[0]
  img=Variable(img).cuda()
  real_label=Variable(torch.ones(num_img)).cuda()#真实label为1
  fake_label=Variable(torch.zeros(num_img)).cuda()#假的label为0

  #compute loss of real_img
  real_out=D(img) #真实图片送入判别器D输出0~1
  d_loss_real=criterion(real_out,real_label)#得到loss
  real_scores=real_out#真实图片放入判别器输出越接近1越好

  #compute loss of fake_img
  z=Variable(torch.randn(num_img,z_dimension)).cuda()#随机生成向量
  fake_img=G(z)#将向量放入生成网络G生成一张图片
  fake_out=D(fake_img)#判别器判断假的图片
  d_loss_fake=criterion(fake_out,fake_label)#假的图片的loss
  fake_scores=fake_out#假的图片放入判别器输出越接近0越好

  #D bp and optimize
  d_loss=d_loss_real+d_loss_fake
  d_optimizer.zero_grad() #判别器D的梯度归零
  d_loss.backward() #反向传播
  d_optimizer.step() #更新判别器D参数

  #生成器G的训练compute loss of fake_img
  for j in range(gepoch):
  fake_label = Variable(torch.ones(num_img)).cuda() # 真实label为1
  z = Variable(torch.randn(num_img, z_dimension)).cuda() # 随机生成向量
  fake_img = G(z) # 将向量放入生成网络G生成一张图片
  output = D(fake_img) # 经过判别器得到结果
  g_loss = criterion(output, fake_label)#得到假的图片与真实标签的loss
  #bp and optimize
  g_optimizer.zero_grad() #生成器G的梯度归零
  g_loss.backward() #反向传播
  g_optimizer.step()#更新生成器G参数
  # if ((i+1)%1000==0):
  # print("[%d/%d] GLoss: %.5f" % (i + 1, gepoch, g_loss.data[0]))
 print('Epoch [{}/{}], d_loss: {:.6f}, g_loss: {:.6f} '
   'D real: {:.6f}, D fake: {:.6f}'.format(
  i, epoch, d_loss.data[0], g_loss.data[0],
  real_scores.data.mean(), fake_scores.data.mean()))
 showimg(fake_img,count)
 plt.show()
 count += 1

这里的gepoch设置为1,运行39次的结果是:

gepoch设置为2,运行0、25、50、75、100次的结果是:

gepoch设置为3,运行25、50、75次的结果是:

gepoch设置为4,运行0、10、20、30、35次的结果是:

gepoch设置为5,运行0、10、20、25、29次的结果是:

gepoch设置为3,z_dimension设置为190,epoch运行0、10、15、20、25、35的结果是:

可以看到生成的数字基本没有太多的规律,可能最终都是同个数字,不能生成指定的数字,CGAN就很好的解决这个问题,可以生成指定的数字 Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

以上这篇Pytorch使用MNIST数据集实现基础GAN和DCGAN详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch GAN伪造手写体mnist数据集方式

    一,mnist数据集 形如上图的数字手写体就是mnist数据集. 二,GAN原理(生成对抗网络) GAN网络一共由两部分组成:一个是伪造器(Generator,简称G),一个是判别器(Discrimniator,简称D) 一开始,G由服从某几个分布(如高斯分布)的噪音组成,生成的图片不断送给D判断是否正确,直到G生成的图片连D都判断以为是真的.D每一轮除了看过G生成的假图片以外,还要见数据集中的真图片,以前者和后者得到的损失函数值为依据更新D网络中的权值.因此G和D都在不停地更新权值.以下图为例

  • Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

    CGAN的全拼是Conditional Generative Adversarial Networks,条件生成对抗网络,在初始GAN的基础上增加了图片的相应信息. 这里用传统的卷积方式实现CGAN. import torch from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision import transforms from torch import opti

  • 详解PyTorch手写数字识别(MNIST数据集)

    MNIST 手写数字识别是一个比较简单的入门项目,相当于深度学习中的 Hello World,可以让我们快速了解构建神经网络的大致过程.虽然网上的案例比较多,但还是要自己实现一遍.代码采用 PyTorch 1.0 编写并运行. 导入相关库 import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, t

  • pytorch:实现简单的GAN示例(MNIST数据集)

    我就废话不多说了,直接上代码吧! # -*- coding: utf-8 -*- """ Created on Sat Oct 13 10:22:45 2018 @author: www """ import torch from torch import nn from torch.autograd import Variable import torchvision.transforms as tfs from torch.utils.dat

  • 使用 PyTorch 实现 MLP 并在 MNIST 数据集上验证方式

    简介 这是深度学习课程的第一个实验,主要目的就是熟悉 Pytorch 框架.MLP 是多层感知器,我这次实现的是四层感知器,代码和思路参考了网上的很多文章.个人认为,感知器的代码大同小异,尤其是用 Pytorch 实现,除了层数和参数外,代码都很相似. Pytorch 写神经网络的主要步骤主要有以下几步: 1 构建网络结构 2 加载数据集 3 训练神经网络(包括优化器的选择和 Loss 的计算) 4 测试神经网络 下面将从这四个方面介绍 Pytorch 搭建 MLP 的过程. 项目代码地址:la

  • pytorch实现mnist分类的示例讲解

    torchvision包 包含了目前流行的数据集,模型结构和常用的图片转换工具. torchvision.datasets中包含了以下数据集 MNIST COCO(用于图像标注和目标检测)(Captioning and Detection) LSUN Classification ImageFolder Imagenet-12 CIFAR10 and CIFAR100 STL10 torchvision.models torchvision.models模块的 子模块中包含以下模型结构. Ale

  • Pytorch使用MNIST数据集实现基础GAN和DCGAN详解

    原始生成对抗网络Generative Adversarial Networks GAN包含生成器Generator和判别器Discriminator,数据有真实数据groundtruth,还有需要网络生成的"fake"数据,目的是网络生成的fake数据可以"骗过"判别器,让判别器认不出来,就是让判别器分不清进入的数据是真实数据还是fake数据.总的来说是:判别器区分真实数据和fake数据的能力越强越好:生成器生成的数据骗过判别器的能力越强越好,这个是矛盾的,所以只能

  • pytorch 把MNIST数据集转换成图片和txt的方法

    本文介绍了pytorch 把MNIST数据集转换成图片和txt的方法,分享给大家,具体如下: 1.下载Mnist 数据集 import os # third-party library import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.data as Data import torchvision import matplotlib.pyplot as plt # t

  • 关于Pytorch的MNIST数据集的预处理详解

    关于Pytorch的MNIST数据集的预处理详解 MNIST的准确率达到99.7% 用于MNIST的卷积神经网络(CNN)的实现,具有各种技术,例如数据增强,丢失,伪随机化等. 操作系统:ubuntu18.04 显卡:GTX1080ti python版本:2.7(3.7) 网络架构 具有4层的CNN具有以下架构. 输入层:784个节点(MNIST图像大小) 第一卷积层:5x5x32 第一个最大池层 第二卷积层:5x5x64 第二个最大池层 第三个完全连接层:1024个节点 输出层:10个节点(M

  • pytorch实现mnist数据集的图像可视化及保存

    如何将pytorch中mnist数据集的图像可视化及保存 导出一些库 import torch import torchvision import torch.utils.data as Data import scipy.misc import os import matplotlib.pyplot as plt BATCH_SIZE = 50 DOWNLOAD_MNIST = True 数据集的准备 #训练集测试集的准备 train_data = torchvision.datasets.M

  • 手把手教你实现PyTorch的MNIST数据集

    概述 MNIST 包含 0~9 的手写数字, 共有 60000 个训练集和 10000 个测试集. 数据的格式为单通道 28*28 的灰度图. 获取数据 def get_data(): """获取数据""" # 获取测试集 train = torchvision.datasets.MNIST(root="./data", train=True, download=True, transform=torchvision.tran

  • PyTorch实现MNIST数据集手写数字识别详情

    目录 一.PyTorch是什么? 二.程序示例 1.引入必要库 2.下载数据集 3.加载数据集 4.搭建CNN模型并实例化 5.交叉熵损失函数损失函数及SGD算法优化器 6.训练函数 7.测试函数 8.运行 三.总结 前言: 本篇文章基于卷积神经网络CNN,使用PyTorch实现MNIST数据集手写数字识别. 一.PyTorch是什么? PyTorch 是一个 Torch7 团队开源的 Python 优先的深度学习框架,提供两个高级功能: 强大的 GPU 加速 Tensor 计算(类似 nump

  • python机器学习基础特征工程算法详解

    目录 一.机器学习概述 二.数据集的构成 1.数据集存储 2.可用的数据集 3.常用数据集的结构 三.特征工程 1.字典数据特征抽取 2.文本特征抽取 3.文本特征抽取:tf-idf 4.特征预处理:归一化 5.特征预处理:标准化 6.特征预处理:缺失值处理 一.机器学习概述 机器学习是从数据中,自动分析获得规律(模型),并利用规律对未知数据进行预测. 二.数据集的构成 1.数据集存储 机器学习的历史数据通常使用csv文件存储. 不用mysql的原因: 1.文件大的话读取速度慢: 2.格式不符合

  • IOS Swift基础之switch用法详解

    IOS  Swift基础之switch用法详解 概述 Swift中的switch语句与Java等语言中的switch有很大的相似点,但是也有不同的地方,并且更加灵活. Swift中switch的case语句中不需要添加break Swift中需要考虑所有情况,default是必要的. case分支可以添加多个条件,用,分割 case不局限与常量,可以使使用范围 switch里可以使用元组 switch默认不需要添加break,执行一个case之后就跳出语句,如果想要继续下面的语句可以使用fall

  • django基础之数据库操作方法(详解)

    Django 自称是"最适合开发有限期的完美WEB框架".本文参考<Django web开发指南>,快速搭建一个blog 出来,在中间涉及诸多知识点,这里不会详细说明,如果你是第一次接触Django ,本文会让你在感性上对Django有个认识,完成本文操作后会让你有兴趣阅读的相关书籍和文档. 本文客操作的环境,如无特别说明,后续都以下面的环境为基础: =================== Windows 7/10 python 3.5 Django 1.10 ======

随机推荐